INTERNATIONAL TABLES
FOR
CRYSTALLOGRAPHY

Volume B
RECIPROCAL SPACE

Edited by
U. SHMUELI



Contributing authors

E. ArNoLD: CABM & RutGERs UNIVERSITY, 679 HOoEs R. E. Marsu: The Beckman Institute—139-74, Cali-
LANE, Piscataway, NEw JERSEY 08854-5638, USA. fornia Institute of Technology, 1201 East California

[2.3] Blvd, Pasadena, California 91125, USA. [3.2]
M. 1. Arovo: Faculty of Physics, University of Sofia,R. P. Mwirane: Whistler Center for Carbohydrate
bulv. J. Boucher 5, 1164 Sofia, Bulgaria. [1.5] Research, and Computational Science and

A. Autnier: Laboratoire de Minmlogie-Cristallo- ~ Engineering Program, Purdue University, West
graphie, Universitd®. et M. Curie, 4 Place Jussieu, Lafayette, Indiana 47907-1160, USA. [4.5.1, 4.5.2]

F-75252 Paris CEDEX 05, France. [S.1] A. F. Moobie: Department of Applied Physics, Royal
G. Bricogne: MRC Laboratory of Molecular Biology, Melbourne Institute of Technology, 124 La Trobe
Hills Road, Cambridge CB2 2QH, England, and Street, Melbourne, Victoria 3000, Australia. [5.2]
LURE, Batiment 209D, Universit®aris-Sud, 91405 P. S. Rrsuan: Division of Engineering and Applied

Orsay, France. [1.3] Science and The Physics Department, Harvard

P. Coppens: Department of Chemistry, Natural yniversity, Cambridge, MA 02138, USA. [4.4]

Sciences & Mathematics Complex, State Universi%( _ .
of New York at Buffalo, Buffalo, New York 14260- ©- RamasesHAN: Raman Research Institute, Bangalore

3000, USA. [1.2] 560 080, India. [2.4]

J. M. CowLey: Arizona State University, Box 871504 M. G. Rossmann: Department of Biological Sciences,
Department of Physics and Astronomy, Tempe, AZ Purdue University, West Lafayette, Indiana 47907,
85287-1504, USA. [2.5.1, 2.5.2, 4.3, 5.2] USA. [2.3]

R. Diamonp: MRC Laboratory of Molecular Biology, D. E. Ssnps: Department of Chemistry, University of
Hills Road, Cambridge CB2 2QH, England. [3.3] Kentucky, Chemistry—Physics Building, Lexington,

D. L. Dorser: ExxonMobil Research and Engineering Kentucky 40506-0055, USA. [3.1]

Co., 1545 Route 22 East, Clinton Townshipvi. ScuLenker: Laboratoire Louis Nel du CNRS, BP
Annandale, New Jersey 08801, USA. [2.5.7, 4.5.1,166, F-38042 Grenoble CEDEX 9, France. [5.3]

4.5.3] o ) ) V. ScuomakerT [3.2]
F. RRey: Institut fir Kristallographie und Mineralogie,

Universitd, Theresienstrasse 41, D-8000 Minen Y- SaMUELL School of Chemistry, Tel Aviv Univer-
2, Germany. [4.2] sity, 69 978 Tel Aviv, Israel. [1.1, 1.4, 2.1]

C. Gicovazzo: Dipartimento Geomineralogico,W. Steurer: Laboratory of Crystallography, Swiss
Campus Universitario, 1-70125 Bari, Italy. [2.2] Federal Institute of Technology, CH-8092 Zurich,

J. K. Gignnes: Institute of Physics, University of Oslo, SWitzerland. [4.6]
PO Box 1048, N-0316 Oslo 3, Norway. [4.3] B. K. VansHTEINT [2.5.4, 2.5.5, 2.5.6]

P. Goobmant [2.5.3, 5.2] M. Viavan: Molecular Biophysics Unit, Indian Insti-
R. W. Grosse-KunstLeve: Lawrence Berkeley tute of Science, Bangalore 560 012, India. [2.4]

National Laboratory, 1 Cyclotron Road, Mailstogy £ \Wii1iams: De : : :
. E. : Department of Chemistry, University
4-230, Berkeley, CA 94720, USA. [1.4] of Louisville, Louisville, Kentucky 40292, USA.
J.-P. Guicay: European Synchrotron Radiation [3.4]

Facility, BP 220, F-38043 Grenoble, France. [5'3]8. T. M. WiLLis: Chemical Crystallography Labora-

T. Hamacn: Laboratory of Crystallography, Swiss tory, University of Oxford, 9 Parks Road, Oxford
Federal Institute of Technology, CH-8092 Zurich, ox1 3PD, England. [4.1]

Switzerland. [4.6] e F ]
S. R. Hiw: Crystallography Centre, University of - € WiLsoNT [2.

Western Australia, Nedlands 6907, WA, Australidd. Wonpratscuek: Institut fir  Kristallographie,
[1.4] Universita, D-76128 Karlsruhe, Germany. [1.5]

H. Jacopzinskr: Institut fir Kristallographie und B. B. Zvyacin: Institute of Ore Mineralogy (IGEM),
Mineralogie, Universith Theresienstrasse 41, Academy of Sciences of Russia, Staromonetny 35,
D-8000 Minchen 2, Germany. [4.2] 109017 Moscow, Russia. [2.5.4]

T Deceased. T Deceased.



Contents

PAGE
Preface (U. SHMUELI) XXV
Preface to the second editiofU. SHMUELI) .. XXV
PART 1. GENERAL RELATIONSHIPS AND TECHNIQUES 1
1.1. Reciprocal space in crystallography(U. SHMUELI) 2
1.1.1. Introduction .. 2
1.1.2. Reciprocal lattice in crystallography .. 2
1.1.3. Fundamental relationships 3
1.1.3.1.Basis vectors .. 3
1.1.3.2.Volumes.. . 3
1.1.3.3.Angular relatlonshlps 4
1.1.3.4.Matrices of metric tensors .. 4
1.1.4. Tensor-algebraic formulation 5
1.1.4.1.Conventions 5
1.1.4.2.Transformations 5
1.1.4.3.Scalar products 5
1.1.4.4.Examples 6
1.1.5. Transformations 7
1.1.5.1.Transformations of coordinates 7
1.1.5.2.Example.. 8
1.1.6. Some analytical aspects of the reciprocal space .. 8
1.1.6.1.Continuous Fourier transform .. 8
1.1.6.2.Discrete Fourier transform .. 8
1.1.6.3.Bloch’s theorem 9
1.2. The structure factor (P. CoppENS) 10
1.2.1. Introduction .. 10
1.2.2. General scattering expression for X-rays.. 10
1.2.3. Scattering by a crystal: definition of a structure factor 10
1.2.4. The isolated-atom approximation in X-ray diffraction 10
1.2.5. Scattering of thermal neutrons .. 11
1.2.5.1.Nuclear scattering.. 11
1.2.5.2.Magnetic scattering .. 11
1.2.6. Effect of bonding on the atomic electron density within the spherical-atom approximation: the kappa formalism 11
1.2.7. Beyond the spherical-atom description: the atom-centred spherical harmonic expansion .. 14
1.2.7.1.Direct-space description of aspherical atoms .. 14
1.2.7.2.Reciprocal-space description of aspherical atoms . . 15
Table 1.2.7.1Real spherical harmonic functions (x, y, z are direction cosmes) 12
Table 1.2.7.2Index-picking rules of site-symmetric spherical harmonics (Kara & Kurki- Suonlo 1981) 15
Table 1.2.7.3:Kubic Harmonic’ functions 16
Table 1.2.7.4Closed-form expressions for Fourler transform of Slater type functlons (Avery & Watson 1977 Su &
Coppens, 1990) 19
1.2.8. Fourier transform of orbital products 17
1.2.8.1.0ne-centre orbital products.. 18
1.2.8.2.Two-centre orbital products.. 18
Table 1.2.8.1Products of complex spherical harmonlcs as deflned by equatlon (l 2.7. Za) 20
Table 1.2.8.2Products of real spherical harmonics as defined by equations (1.2.7.2b) and (1.2.7. 2(:) 20
Table 1.2.8.3Products of two real spherical harmonic functiong,yin terms of the density functlonsmg deflned by
equation (1.2.7.3b) e e e 21
1.2.9. The atomic temperature factor .. 18
1.2.10. The vibrational probability distribution and its Fourier transform in the harmonic approximation 18
1.2.11. Rigid-body analysis .. 19

Vii



CONTENTS

Table 1.2.11.1The arrays G, and H,kl to be used in the observational equat|0n§J;lG,Jk, Lkl + H,]kl SK. +T; [e

(1.2.11.9)]

1.2.12. Treatment of anharmonicity

1.2.12.1.The Gram—Charlier expansion ..
1.2.12.2.The cumulant expansion.. .
1.2.12.3.The one-particle potential (OPP) model
1.2.12.4 Relative merits of the three expansions ..
Table 1.2.12.1Some Hermite polynomials (Johnson & Levy, 1974, Zucker & Schulz 1982)

1.2.13. The generalized structure factor ..
1.2.14. Conclusion ..

1.3. Fourier transforms in crystallography: theory, algorithms and applications (G. BricoGNE)
1.3.1. General introduction
1.3.2. The mathematical theory of the Fourier transformation ..

1.3.2.1.Introduction . .
1.3.2.2.Preliminary notions and notatlon

1.3.2.2.1.Metric and topological notions mR”
1.3.2.2.2 Functions oveiR" e
1.3.2.2.3.Multi-index notation ..
1.3.2.2.4Integration, [P spaces " .
1.3.2.2.5.Tensor products. Fubini's theorem .
1.3.2.2.6.Topology in function spaces ..
1.3.2.2.6.1General topology ..
1.3.2.2.6.2Topological vector spaces ..

1.3.2.3.Elements of the theory of distributions ..

1.3.2.3.1.0rigins ..

1.3.2.3.2.Rationale

1.3.2.3.3.Test-function spaces
1.3.2.3.3.1Topology oné(2)
1.3.2.3.3.2Topology on%,(2)
1.3.2.3.3.3Topology on%(2) .. . .
1.3.2.3.3.4Topologies ont™, @(m’ g

1.3.2.3.4 Definition of distributions

1.3.2.3.5.First examples of distributions..

1.3.2.3.6.Distributions associated to locally |ntegrable functlons..

1.3.2.3.7.Support of a distribution..
1.3.2.3.8.Convergence of distributions ..
1.3.2.3.9.0perations on distributions..

1.3.2.3.9.1Differentiation

1.3.2.3.9.2Integration of dlstrlbutlons in dlmen5|on 1 "

1.3.2.3.9.3Multiplication of distributions by functions
1.3.2.3.9.4Division of distributions by functions ..
1.3.2.3.9.5Transformation of coordinates ..
1.3.2.3.9.6Tensor product of distributions ..
1.3.2.3.9.7 Convolution of distributions ..

1.3.2.4.Fourier transforms of functions.

1.3.2.4.1.Introduction
1.3.2.4.2 Fourier transforms in E

1.3.2.4.2.1Linearity .

1.3.2.4.2.2 Effect of afflne coordlnate transformatlons .

1.3.2.4.2.3Conjugate symmetry ..
1.3.2.4.2.4Tensor product property ..
1.3.2.4.2.5Convolution property ..
1.3.2.4.2.6Reciprocity property ..
1.3.2.4.2.7Riemann—Lebesgue lemma..
1.3.2.4.2.8Differentiation
1.3.2.4.2.9Decrease at infinity .
1.3.2.4.2.10The Paley—Wiener theorem

1.3.2.4.3 Fourier transforms in B ..

1.3.2.4.3.1]nvariance of 12
1.3.2.4.3.2Reciprocity ..

viii

quation

21
22

22
22
23
23
22

23
24

25
25
25

25
26
26
26
27
27
27
28
28
28
28
28
29
29
29
30
30
30
30
30
30
31
31
31

31
32
32
33
33

33

33

34

34
35

35
35

35
35
35
35
35
35
36
36

36

36
36



CONTENTS

1.3.2.4.3.3Isometry ..
1.3.2.4.3.4Eigenspace decomposmon o? L

1.3.2.4.3.5The convolution theorem and the isometry property .

1.3.2.4.4 Fourier transforms iny’ ..

1.3.2.4.4.1 Definition and properties of/ .
1.3.2.4.4.2Gaussian functions and Hermite functlons .
1.3.2.4.4.3Heisenberg’s inequality, Hardy’s theorem
1.3.2.4.4.4Symmetry property..
1.3.2.4.5.Various writings of Fourier transforms ..
1.3.2.4.6.Tables of Fourier transforms ..

1.3.2.5.Fourier transforms of tempered distributions ..

1.3.2.5.1.Introduction .

1.3.2.5.2.7 as a test-function space .
1.3.2.5.3.Definition and examples of tempered dlstrlbutlons .
1.3.2.5.4 Fourier transforms of tempered distributions ..
1.3.2.5.5.Transposition of basic properties..
1.3.2.5.6.Transforms oB-functions

1.3.2.5.7 Reciprocity theorem .. .

1.3.2.5.8 Multiplication and convolutlon

1.3.2.5.9..2 aspects, Sobolev spaces

1.3.2.6.Periodic distributions and Fourier series.
1.3.2.6.1.Terminology . .
1.3.2.6.2Z"-periodic distributions |ann N
1.3.2.6.3.Identification with distributions ovdR”/Z”
1.3.2.6.4.Fourier transforms of periodic distributions.
1.3.2.6.5.The case of non-standard period lattices ..
1.3.2.6.6.Duality between periodization and sampling ..
1.3.2.6.7.The Poisson summation formula ..
1.3.2.6.8.Convolution of Fourier series ..
1.3.2.6.9.Toeplitz forms, Széfptheorem

1.3.2.6.9.1Toeplitz forms ..
1.3.2.6.9.2The Toeplitz— Carat”rrEiory—HergIotz theorem

1.3.2.6.9.3 Asymptotic distribution of eigenvalues of Toeplitz forms

1.3.2.6.9.4Consequences of Szégtheorem
1.3.2.6.10Convergence of Fourier series ..
1.3.2.6.10.1Classical L* theory .
1.3.2.6.10.2Classical 12 theory .
1.3.2.6.10.3The viewpoint of dlstrlbutlon theory

1.3.2.7.The discrete Fourier transformation . "
1.3.2.7.1.Shannon’s sampling theorem and |nterpolat|on formula
1.3.2.7.2.Duality between subdivision and decimation of period lattices

1.3.2.7.2.1Geometric description of sublattices ..
1.3.2.7.2.2 Sublattice relations for reciprocal lattices.
1.3.2.7.2.3Relation between lattice distributions..
1.3.2.7.2.4Relation between Fourier transforms..

1.3.2.7.2.5Sublattice relations in terms of periodic dlstrlbutlons..

1.3.2.7.3 Discretization of the Fourier transformation
1.3.2.7.4 Matrix representation of the discrete Fourier transform (DFT)
1.3.2.7.5.Properties of the discrete Fourier transform

1.3.3. Numerical computation of the discrete Fourier transform

1.3.3.1.Introduction

1.3.3.2.0ne-dimensional algorrthms "
1.3.3.2.1.The Cooley-Tukey algorithm ..
1.3.3.2.2.The Good (or prime factor) algorithm

1.3.3.2.2.1Ring structure orZ/NZ "

1.3.3.2.2.2The Chinese remainder theorem ..

1.3.3.2.2.3The prime factor algorithm ..
1.3.3.2.3.The Rader algorithm..

1.3.3.2.3.1N an odd prime.. .

1.3.3.2.3.2N a power of an odd prrme "

1.3.3.2.3.3N a power of 2 ..

36
36
36
37
37
37
38
38
38
38

38

38
39
39
39
39
39
40
40
40

40
40

41
41
41
42
42
42
43
43

43
43
43
44
44

44
45
45

45

45
46
46
46
46
47
a7

a7
49
49

49

49
50
50
51
51
51
52
52
53
53
53



CONTENTS
1.3.3.2.4.The Winograd algorithms ..

1.3.3.3.Multidimensional algorithms

1.3.3.3.1.The method of successive one- dlmensmnal transforms

1.3.3.3.2.Multidimensional factorization.. .
1.3.3.3.2.1Multidimensional Cooley—Tukey factonzatlon .
1.3.3.3.2.2Multidimensional prime factor algorithm ..
1.3.3.3.2.3Nesting of Winograd small FFTs ..
1.3.3.3.2.4The Nussbaumer—Quandalle algorithm ..

1.3.3.3.3.Global algorithm design.. e e e e
1.3.3.3.3.1From local pieces to global algonthms .
1.3.3.3.3.2Computer architecture considerations.
1.3.3.3.3.3The Johnson—Burrus family of algorithms

1.3.4. Crystallographic applications of Fourier transforms

1.3.4.1.Introduction
1.3.4.2.Crystallographic Fourier transform theory

1.3.4.2.1 Crystal periodicity

1.3.4.2.1.1Period lattice, reciprocal lattice and structure factors..

1.3.4.2.1.2 Structure factors in terms of form factors.

1.3.4.2.1.3Fourier series for the electron density and its summatlon .

1.3.4.2.1.4Friedel's law, anomalous scatterers ..
1.3.4.2.1.5Parseval’s identity and other?theorems..
1.3.4.2.1.6 Convolution, correlation and Patterson function

1.3.4.2.1.7Sampling theorems, continuous transforms, interpolatian ..

1.3.4.2.1.8Sections and projections..
1.3.4.2.1.9Differential syntheses..

1.3.4.2.1.10Toeplitz forms, determinantal mequalltles and Sz‘sgmeorem .

1.3.4.2.2 Crystal symmetry ..

1.3.4.2.2.1 Crystallographic groups ..

1.3.4.2.2.2Groups and group actions .
1.3.4.2.2.3Classification of crystallographic groups
1.3.4.2.2.4Crystallographic group action in real space..
1.3.4.2.2.5Crystallographic group action in reciprocal space..
1.3.4.2.2.6 Structure-factor calculation ..
1.3.4.2.2.7Electron-density calculations.

1.3.4.2.2.8Parseval’s theorem with crystallographlc symmetry

1.3.4.2.2.9Convolution theorems with crystallographic symmetry .

1.3.4.2.2.10Correlation and Patterson functions..

1.3.4.3.Crystallographic discrete Fourier transform algorithms ..

1.3.4.3.1 Historical introduction

1.3.4.3.2.Defining relations and symmetry consnderatlons

1.3.4.3.3.Interaction between symmetry and decomposition ..

1.3.4.3.4.Interaction between symmetry and factorization .. .
1.3.4.3.4.1Multidimensional Cooley—Tukey factorization ..
1.3.4.3.4.2Multidimensional Good factorization ..

1.3.4.3.4.3Crystallographic extension of the RaderANrnograd factorlzatlon .
1.3.4.3.5.Treatment of conjugate and parity-related symmetry properties..

1.3.4.3.5.1Hermitian-symmetric or real-valued transforms.

1.3.4.3.5.2Hermitian-antisymmetric or pure imaginary transforms ..

1.3.4.3.5.3Complex symmetric and antisymmetric transforms
1.3.4.3.5.4Real symmetric transforms ..
1.3.4.3.5.5Real antisymmetric transforms..
1.3.4.3.5.6 Generalized multiplexing..

1.3.4.3.6.Global crystallographic algorithms
1.3.4.3.6.1.Triclinic groups
1.3.4.3.6.2Monoclinic groups ..
1.3.4.3.6.30rthorhombic groups ..
1.3.4.3.6.4Trigonal, tetragonal and hexagonal groups
1.3.4.3.6.5Cubic groups
1.3.4.3.6.6Treatment of centred Iattlces
1.3.4.3.6.7 Programming considerations.

1.3.4.4.Basic crystallographic computations..

54

55

55
55
55
56
56
57
57

57
58
58

58

58
59
59

59
60
60
60
61
61
61
62
63
63

64

64
64
66
67
68
68
69
69
70
70

71

71
72
73
73

74
76
76
79
79
80
80
81
82
82
82
82
82
82
83

83
83
83

84



CONTENTS

1.3.4.4.1.Introduction .
1.3.4.4.2 Fourier synthesis of electron denS|ty maps
1.3.4.4.3 Fourier analysis of modified electron-density maps ..

1.3.4.4.3.1Squaring .. .
1.3.4.4.3.20ther non-linear operatlons
1.3.4.4.3.3Solvent flattening .. .
1.3.4.4.3.4Molecular averaging by noncrystallographlc symmetnes
1.3.4.4.3.5Molecular-envelope transforms via Green'’s theorem..
1.3.4.4.4 Structure factors from model atomic parameters..
1.3.4.4.5.Structure factors via model electron-density maps ..
1.3.4.4.6.Derivatives for variational phasing techniques.
1.3.4.4.7 Derivatives for model refinement..

1.3.4.4.7.1The method of least squares.

1.3.4.4.7.2Booth’s differential Fourier syntheses
1.3.4.4.7.3Booth’s method of steepest descents..
1.3.4.4.7.4Cochran’s Fourier method .
1.3.4.4.7.5Cruickshank’s modified Fourier method .
1.3.4.4.7.6 Agarwal’'s FFT implementation of the Fourier method
1.3.4.4.7.7Lifchitz's reformulation

1.3.4.4.7.8 A simplified derivation .
1.3.4.4.7.9Discussion of macromolecular reflnement technlques
1.3.4.4.7.10Sampling considerations.

1.3.4.4.8 Miscellaneous correlation functions ..
1.3.4.5.Related applications ..
1.3.4.5.1 Helical diffraction

1.3.4.5.1.1Circular harmonic expansions in polar coordinates
1.3.4.5.1.2The Fourier transform in polar coordinates ..
1.3.4.5.1.3The transform of an axially periodic fibre.
1.3.4.5.1.4Helical symmetry and associated selection rules ..

1.3.4.5.2 Application to probability theory and direct methods.

1.3.4.5.2.1 Analytical methods of probability theory ..
1.3.4.5.2.2The statistical theory of phase determination ..

1.4. Symmetry in reciprocal spacgU. SHMUELL S. R. HALL AND R. W. GROSSE-KUNSTLEVE)

1.4.1.
1.4.2.

1.4.3.

1.4.4.

Introduction (U. SHMUELI)
Effects of symmetry on the Fourier image of the crysta{U. SumUELI)

1.4.2.1.Point-group symmetry of the reciprocal lattice..

1.4.2.2.Relationship between structure factors at symmetry- related pomts of the reuprocal Iattlce .

1.4.2.3.Symmetry factors for space-group-specific Fourier summatians ..
1.4.2.4.Symmetry factors for space-group-specific structure-factor formulae ..

Structure-factor tables(U. SHMUELI)

1.4.3.1.Some general remarks .. . .
1.4.3.2.Preparation of the structure-factor tables .
1.4.3.3.Symbolic representation of A and B ..
1.4.3.4. Arrangement of the tables ..

Symmetry in reciprocal space: space-group tablgdJ). SHMUELI)

1.4.4.1.Introduction

1.4.4.2 Arrangement of the space group tables

1.4.4.3.Effect of direct-space transformations ..

1.4.4.4.Symmetry in Fourier space..

1.4.4.5.Relationships between direct and recnprocal Bravals Iattlces

Table 1.4.4.1Correspondence between types of centring in direct and recnprocal Iattlces

Appendix 1.4.1. Comments on the preparation and usage of the tablg®). SuMUELI)
Appendix 1.4.2. Space-group symbols for numeric and symbolic computations ..

A1.4.2.1.Introduction (U. SHMUELL S. R. HALL AND R. W. GROSSE-KUNSTLEVE)
Al1.4.2.2.Explicit symbolgU. SHMUELI)
A1.4.2.3.Hall symbols(S. R. HaLL aND R. W. GROSSE KUNSTLEVE)
Al.4.2.3.1.Default axes
Al.4.2.3.2.Example matrices..
Table A1.4.2.1Explicit symbols ..

Xi

84
84
84

84
84

84
85
86

86
86
87
88
88
88
89
89
90
90

91

91
92

92

92

93

93

93
93
93
93
94
94
96

99
99
99

99
99
101
101

102

102
102
102

103

104

104
104
104

105
105

106

106
107
107

108
112

114
114

109



CONTENTS

Table Al.4.2.2Lattice symbol L.. .. .. .. .. o o o e e e e e e e e 112
Table Al.4.2.3Translation symbol T .. .. .. .. e e e e e e e e e e e e e e e e 112
Table Al.4.2.4Rotation matrices for principal axes. .. .. .. .. .. . . o e e e e e e e 113
Table Al.4.2.5Rotation matrices for face-diagonal axes.. .. .. .. .. . .« o o o e e e e e e e 113
Table Al.4.2.6Rotation matrix for the body-diagonal axis .. .. .. .. . . . .« o o o e e e 113
Table A1.4.2.7Hall symbols .. .. .. .. .. . e e e e e e e e e e e 115

Appendix 1.4.3. Structure-factor tables(U. SHMUELI) .. .. .. .. oo v oo v i e e e e e e e 120

Table AL.4.3.1Plane groupsS.. .. .. oo o ci i e e e e e e e e e e e e e e e 120
Table A1.4.3.2TricliniC SPACE GrOUPS .. ..« o i ot e et e e e e e e e e e 120
Table A1.4.3.3Monoclinic SPace groups .. .. ..« o o i o et e e e e e e e e e 121
Table A1.4.3.40rthorhombic space groups .. .. .. .. .. . o i i b e e e e e e e e e 123
Table Al1.4.3.5Tetragonal space groups .. .. .. e e e e e e e e e e e e e e e 126
Table A1.4.3.6Trigonal and hexagonal space groups e, 137

Table A1.4.3.7CubiC SPaCe groUPS. .. .. . wv i ev e e e e e e e e e e e e e 144

Appendix 1.4.4. Crystallographic space groups in reciprocal Spac@U. SHMUELI) .. .. .. oo wo wo e e e e er e 150
Table Al1.4.4.1Crystallographic space groups in reciprocal space. .. .. .. .. . . .« o e e e 150

1.5. Crystallographic viewpoints in the classification of space-group representation®1. I. Aroyo aND H. WONDRATSCHEK) .. .. 162

1.5.1. Listof symbols .. .. .. .. o e e e e e e e e e e e e e 162
1.5.2.IntroducCtion .. .. .. . o e e e e e e e e e e e e e e e e 162
1.5.3. BaSIC CONCEPLS .. .. oo i oi o eh e it e e e e e e e e e e e e e e 162

1.5.3.1.Representations of finite groups .. .. .. .. . o e e e e e e 162
1.5.3.2.Space groups .. .. e e e e e e e e e e 163
1.5.3.3.Representations of the translatlon groﬁpand the recrprocal Iatt|ce e e e e e e e e e e 164
1.5.3.4.Irreducible representations of space groups and the reciprocal-space group e e e e e e 165

1.5.4. Conventions in the classification of space-group irreps .. .. .. .. .. . .« o o e e e e 165

1.5.4.1.Fundamental regions.. .. .. .. . o o i e e e e e e e e e e e e e e e e e 165
1.5.4.2Minimal domains .. .. .. .. . e e e e e e e e e e e e e e e e 166
1.5.4.3.Wintgen positions.. .. .. . 167
Table 1.5.4.1Conventional coefﬁmentdq) of k expressed by the adjusted coeff|C|e(1t§) of ITA for the dlfferent

Bravais types of lattices in direct space.. .. .. . 167
Table 1.5.4.2Primitive coefﬂments(kp) of k from CDML expressed by the adjusted coefflCle(lkgs) of IT A for the

different Bravais types of lattices in direct space.. .. .. I 167

1.5.5. Examples and conclusions .. .. .. .. . o o e e e e e e e e e e e e e e e 168

1551 Examples .. .. . o o e e e e e e e e e e e e e e e e 168
1.5.5.2.Results .. .. .. e e e e e e e e e e e e e e e e e e e 169
1.5.5.3.Parameter ranges e e e e e e e e e e e e e e e e e e e e e e e 171
1.5.5.4.Conclusions .. .. .. e e e e e e e e e e e 172

Table 1.5.5.1Thek-vector types for the space groupsamm and IeSd e e e e e e e e e e e e e 168
Table 1.5.5.2Thek-vector types for the space groups3mnd 183 .. e e e e e 170
Table 1.5.5.3Thek-vector types for the space groupé/mmm, I4/mcm l41/amd and nl/acd T, 172

Table 1.5.5.4Thek-vector types for the space groups Fthemd Fd&® .. .. .. .. . e e e e e e e e 174

Appendix 1.5.1. Reciprocal-space group§” .. .. .. .. . .« o e e e e e e e e e e e 176

References .. .. .. . o e e e e e e e e e e e e e e e e 178

PART 2. RECIPROCAL SPACE IN CRYSTAL-STRUCTURE DETERMINATION .. .. .. . . . . . 189

2.1. Statistical properties of the weighted reciprocal latticqU. SHMUELI AND A. J. C. WILSON) .. . oo o oo e oo e oo ee 190

2.1.1. IntroduCtion .. .. .. . o e e e e e e e e e e e e e e e e e e e e e 190
2.1.2. The average intensity of general reflections.. .. .. .. .. . . .« o e e e e e e e e e e 190

2.1.2.1.Mathematical background .. .. .. .. . . . o e e e e e e e 190
2.1.2.2.Physical background.. .. .. .. . e e e e e e e e e e e e e e e e 191
2.1.2.3.An approximation for organic compounds e e e e e e e e e e e e e e 191
2. 124 Effectof centring .. .. .. . . o e e e e e e e e e e e e 191

2.1.3. The average intensity of zones and rOWS. .. .. .. .. . o o e e e e e e e e 191

2.1.3.1.Symmetry elements producing systematic absences. .. .. .. .. . . o e e e e e 191
2.1.3.2.Symmetry elements not producing systematic absences .. .. .. .. . . . o o e e e e 192
2.1.3.3.More than one symmetry element. .. .. .. .. .. . . o e e e e e e e e e e e 192

Xii



2.2.

CONTENTS

Table 2.1.3.1Intensity-distribution effects of symmetry elements causing systematic absences .. .. .. .. .. .. . 191
Table 2.1.3.2Intensity-distribution effects of symmetry elements not causing systematic absences.. .. .. .. .. . 192
Table 2.1.3.3Average multiples for the 32 point groups (modified from Rogers, 1950) .. .. .. .. .. . . . . . 193
2.1.4. Probability density distributions — mathematical preliminaries .. .. .. .. . . . . . . o o o oo . 192
2.1.4.1.Characteristic functions .. .. .. e e e e e e e e e e e e e 192
2.1.4.2.The cumulant-generating functlon f e e e e e e e e e e e e e e e e e e e e 193
2.1.4.3.The central-limit theorem .. .. .. . . . . o o e e e e e e e 194
2.1.4.4.Conditions of validity .. .. .. .. .. . e e e e e e e e e e e 195
2.1.45.Non-independent variables.. .. .. .. .. . . L e e e e e e e 195
2.1.5. Ideal probability density distributions e e e e e e e e 195
2.1.5.1.1deal acentric distributions .. .. .. .. .. . oo e e e e e e e e e e e e e e 195
2.1.5.2.1deal centric distributions .. .. C e e e e e e 196
2.1.5.3.Effect of other symmetry eIements on the |deaI acentrlc and centrlc dlstrlbutlons e e e e e e 196
2.1.5.4.0ther ideal distributions.. .. .. .. .. . o e e e e e e e e e e e e e e e e 196
2.1.5.5.Relation to distributions of | .. .. .. .. . . L L L L e e e e e e e e 196
2.1.5.6.Cumulative distribution functions .. .. .. e e e e e e e e e 196
Table 2.1.5.1Some properties of gamma and beta dlstrlbutlons e e e e e e e e e e e e 197
2.1.6. Distributions of sums, averages and ratios .. .. .. .. .. . oo e e e e e e e e e 197
2.1.6.1.Distributions of sums and averages .. .. .. .. . o e e e e e e e e e e e 197
2.1.6.2.Distribution of ratios .. .. .. e e e e e e e e e e e e e e e 197
2.1.6.3.Intensities scaled to the local average e e e e e e e e e e e e e 198
2.1.6.4.The use of normal approXimations .. .. .. .. .. .« o o o e e e e e e e e e e e 198
2.1.7. Non-ideal distributions: the correction-factor approach .. .. .. .. . . . . . o o L o oo e 199
2.1.7.1.Introduction .. .. e e e e e e e e e e e e e 199
2.1.7.2.Mathematical background . e e e e e e e e e e e 199
2.1.7.3.Application to centric and acentrrc drstrrbutrons e e e e e e e e e e e e e 200
2.1.7.4.Fourier versus Hermite approximations.. .. .. . e e e e e e e e e 203
Table 2.1.7.1Some even absolute moments of the trlgonometrrc structure factor e e e e e e 201
Table 2.1.7.2Closed expressions fox, [equation (2.1.7.11)] for space groups of low symmetry e e e e e 203
2.1.8. Non-ideal distributions: the Fourier method .. .. .. .. .. . . . . o oo e e e 203
2.1.8.1.General representations of p.d.f.’s (| by Fourier series .. .. .. .. . . . . oo e e e e 203
2.1.8.2.Fourier—Bessel series. .. .. .. . o e e e e e e e e 204
2.1.8.3.Simple examples .. .. .. e e e e e e e e e e e e e 205
2.1.8.4.A more complicated example e e e e e e e e e e e e e e e 205
2.1.8.5.Atomic characteristic functions. .. .. .. .. . . L L Lo e e e e e 206
2.1.8.6.0ther non-ideal Fourier p.d.f.’s .. .. .. O, 208
2.1.8.7.Comparison of the correction-factor and Fourrer approaches e e e e e e e 208
Table 2.1.8.1Atomic contributions to characteristic functions fofi|) .. .. .. .. . .« .« .« .« & o o o o e 207
Direct methods(C. Giacovazzo) e e e e e e e e e e e e e e e e e e 210
2.2.1. List of symbols and abbreviations .. .. .. .. .. . . o o e e e e e e e e e e e 210
2.2.2.Introduction .. .. .. L L e e e e e e e e e e e e e e e 210
2.2.3. Origin specification .. .. .. . . e e e e e e e e e e e e e e e e e 210
Table 2.2.3.1Allowed origin translations, seminvariant moduli and phases for centrosymmetric primitive space groups 211
Table 2.2.3.2Allowed origin translations, seminvariant moduli and phases for noncentrosymmetric primitive space groups212
Table 2.2.3.3Allowed origin translations, seminvariant moduli and phases for centrosymmetric non-primitive space group14
Table 2.2.3.4Allowed origin translations, seminvariant moduli and phases for noncentrosymmetric non-primitive space
OrOUPS .. oo i o e e e e e e e e e e e e e e e e e e 214
2.2.4. Normalized structure factors .. .. .. .. . o e e e e e e e e e e e e e e e 215
2.2.4.1.Definition of normalized structure factor.. .. .. .. .. . . . o e e e e e 215
2.2.4.2.Definition of quasi-normalized structure factor. .. .. .. .. . . L o oo e e e e e e 216
2.2.4.3.The calculation of normalized structure factors .. .. .. .. .. . . . o e e e e e e 216
2.2.4.4 Probability distributions of normalized structure factors.. .. .. .. .. .. . . L . oo . 217
Table 2.2.4.1Moments of the distributions (2.2.4.4) and (2.2.4.5) .. .. .. . . .« & o e 217
2.2.5. Phase-determining formulae.. .. .. .. .. . . L e e e e e e e e e e e e 217
2.2.5.1.Inequalities among structure factors.. .. .. e e e e e e e e e e 217
2.2.5.2.Probabilistic phase relationships for structure |nvar|ants e e e e e e e e e e 218
2.2.5.3.Triplet relationships .. .. .. e e e e e e e e e e e e e 218
2.2.5.4.Triplet relationships using structural |nformat|0n e e e e e e e e 219

Xiii



2.3.

CONTENTS

2.2.5.5.Quartet phase relationships. .. .. .. . . o o e e e e e e e 220
2.2.5.6.Quintet phase relationships.. .. .. .. .. . . o Lo e e e e e e e e 222
2.2.5.7.Determinantal formulae .. .. .. . e e e e e e e e e e e 223
2.2.5.8.Algebraic relationships for structure semlnvarlants e C e e e e e e e e 224
2.2.5.9.Formulae estimating one-phase structure seminvariants of the flrst rank e e e e e e e 224
2.2.5.10.Formulae estimating two-phase structure seminvariants of the firstrank.. .. .. .. . . . . . . . . 225
Table 2.2.5.1List of quartets symmetry equivalentdo= &, in the classmmm .. .. .. .. . . . . . . . . . 222
2.2.6. Direct methods in real and reciprocal space: Sayre’'s equation. .. .. .. .. . . o e e e e e e 225
2.2.7. Scheme of procedure for phase determination.. .. .. .. .. . . . o o o e e e e e 227
2.2.8. Other multisolution methods applied to small molecules.. .. .. .. .. .. . . .« o o o 0 o e e e e 228
Table 2.2.8.1Magic-integer sequences for small nhumbers of phases (n) together with the number of sets produced and
the root-mean-square error in the phases .. .. .. .. . . . . o o o e e 229
2.2.9. Some references to direct-methods packages .. .. .. .. .. .« o e e e e e e e e e 230
2.2.10. Direct methods in macromolecular crystallography .. .. .. .. .. . . . o L oo e e e e e e 231
2.2.10.1.ntroduction .. .. .. e e e e e e e e e e e e e 231
2.2.10.2.Ab initio direct phasmg of proterns I e e e e e e e 231
2.2.10.3.Integration of direct methods with |somorphous replacement technlques e e e e e e e e 232
2.2.10.4.Integration of anomalous-dispersion techniques with direct methods. .. .. .. .. .. . . . . . . . 232
2.2.10.4.10ne-wavelength techniques .. .. .. .. .. . . . o oo e e e e 233
2.2.10.4.2The SIRAS, MIRAS and MAD CaSES .. .. ..« v v v e it e e e e e e e 233
Patterson and molecular-replacement technique@V. G. RoSSMANN AND E. ARNOLD) .. .. . o o o o o oo oo oo oo . 235
2.3.1.Introduction .. .. . L e e e e e e e e e e e e e e e e e e e e e e 235
2.3.1.1.Background .. .. e e e e e e e e e 235
2.3.1.2.Limits to the number of resolved vectors e e e e e e e e e e e e e 235
2.3.1.3.Modifications: origin removal, sharpening etc... .. .. .. e e e e 236
2.3.1.4.Homometric structures and the uniqueness of structure squt|ons enantlomorphlc squt|ons. e e 237
2.3.1.5.The Patterson synthesis of the second kind .. .. .. .. .. . . . . . o o o oo a e e e e 238
Table 2.3.1.1Matrix representation of Patterson peaks .. .. .. .. .. . . . . o oo e e e e e 236
2.3.2. Interpretation of Patterson maps .. .. .. .. o e e e e e e e e e e e e e 238
2.3.2.1.Simple solutions in the triclinic cell. Selection of the origin. .. .. .. .. . . . . « .« . . . . . . 238
2.3.2.2.Harker Sections .. .. .. . . o e e e e e e e e e e 239
2.3.2.3.Finding heavy atoms.. .. .. e e e e e e e e e e e e e 239
2.3.2.4.Superposition methods. Image detectron e e e e e e 240
2.3.2.5.Systematic computerized Patterson vector-search procedures Looklng for rlgld bod|es e e e 241
Table 2.3.2.1Coordinates of Patterson peaks fopl&;Cl,Cu,N, projection .. .. 239
Table 2.3.2.2Square matrix representation of vector interactions in a Patterson of a crystal wrth M crystallographlc
asymmetric units each containing N atoms. .. .. .. .. . . o e e e e e e 239
Table 2.3.2.3Position of Harker sections within a Patterson. .. .. .. .. . . . . « & & & o o e 240
2.3.3. Isomorphous replacement difference Pattersons .. .. .. .. .. . . . o o e e e e e e e 242
2.3.3.1L.Introduction .. .. e e e e e e e e e e 242
2.3.3.2.Finding heavy atoms W|th centrosymmetnc prOJectlons G e e e e e e e e e e e 242
2.3.3.3.Finding heavy atoms with three-dimensional methods .. .. .. .. .. . . . .« . . . o o o . o . 243
2.3.3.4.Correlation functions.. .. .. C e e e e e e e e e e e e e e 243
2.3.3.5.Interpretation of isomorphous drfference Pattersons P, 244
2.3.3.6.Direct structure determination from difference Pattersons.. .. .. .. .. . . . . L . o L oo .. 245
2.3.3.7.1somorphism and size of the heavy-atom substitutian .. .. .. .. .. . . . . . L Lo Lo n o . 245
2.3.4. Anomalous diSpersion.. .. .. .. . e e e e e e e e e 246
2.3.4.2.Introduction .. .. . e e e e e e e e e e e e e e e e e e 246
2.3.4.2.The R(uw) function .. .. .. e e e e e e e e e e e e 246
2.3.4.3.The position of anomalous scatterers e e e e e e e e e e e e 247
2.3.5. Noncrystallographic symmetry .. .. .. .. . . o e e e e e e e e e e 248
2.3.5.1.Definitions .. .. .. e e e e e e e e 248
2.3.5.2.Interpretation of Pattersons in the presence of noncrystallographrc symmetry T, 249
Table 2.3.5.1Possible types of vector searches. .. .. . 250
Table 2.3.5.20rientation of the glyceraldehyde-3- phosphate dehydrogenase moIecuIar twofold axis in the orthorhomblc
cell .. e e e e e e e e e e e e 250
2.3.6. Rotation functions .. .. .. .. .. e e e e e e e e e e 250

Xiv



2.3.7.

2.3.8.

2.3.9.

CONTENTS

2.3.6.1.Introduction

2.3.6.2.Matrix algebra ..

2.3.6.3.Symmetry .

2.3.6.4.Sampling, background and |nterpretat|dn .

2.3.6.5.The fast rotation function -

Table 2.3.6.1Different types of uses for the rotation functlon

Table 2.3.6.2Eulerian symmetry elements for all possible types of space group rotatlons
Table 2.3.6.3Numbering of the rotation function space groups.. P

Table 2.3.6.4Rotation function Eulerian space groups

Translation functions ..

2.3.7.1.Introduction .
2.3.7.2.Position of a noncrystallographlc element relatlng two unknown structures .
2.3.7.3.Position of a known molecular structure in an unknown unit cell..

2.3.7.4.Position of a noncrystallographic symmetry element in a poorly defined electron densnty map

Molecular replacement

2.3.8.1.Using a known molecular fragment .. . "
2.3.8.2.Using noncrystallographic symmetry for phase |mprovement
2.3.8.3.Equivalence of real- and reciprocal-space molecular replacement ..

Table 2.3.8.1Molecular replacement: phase refinement as an iterative process ..
Conclusions ..
2.3.9.1.Update

2.4. Isomorphous replacement and anomalous scatterin@l. ViJayaN AND S. RAMASESHAN)

2.4.1.
2.4.2.

2.4.3.

2.4.4.

2.4.5.

2.5. Electron diffraction and electron microscopy in structure determination (J. M. CowLEY, P. GoopmaN, B. K. VAINSHTEIN,

Introduction ..
Isomorphous replacement method..

2.4.2.1.1somorphous replacement and isomorphous addition
2.4.2.2.Single isomorphous replacement method ..
2.4.2.3.Multiple isomorphous replacement method.

Anomalous-scattering method ..

2.4.3.1.Dispersion correction..

2.4.3.2.Violation of Friedel's law

2.4.3.3.Friedel and Bijvoet pairs " .
2.4.3.4.Determination of absolute conflguratlon
2.4.3.5.Determination of phase angles. . .
2.4.3.6.Anomalous scattering without phase change .
2.4.3.7.Treatment of anomalous scattering in structure reflnement

Table 2.4.3.1Phase angles of different components of the structure factor in space g2 P ..

Isomorphous replacement and anomalous scattering in protein crystallography ..

2.4.4.1.Protein heavy-atom derivatives. "

2.4.4.2 Determination of heavy-atom parameters ..

2.4.4.3.Refinement of heavy-atom parameters .. .
2.4.4.4 Treatment of errors in phase evaluation: Blow and Crlck formulatlon .
2.4.4.5.Use of anomalous scattering in phase evaluation.

2.4.4.6.Estimation of r.m.s. error

250
252
253
254
255
251
254
254
256

258

258
259
259
260

260

260
261
262

261
262
262

264
264

264

264
265
265

265

265
266
267
267
268
268
268

267
269

269
269
270
271
272
273

2.4.4.7.Suggested modifications to Blow and Crlck formulanon and the mclusnon of phase mformatlon from other sources 274

2.4.4.8.Fourier representation of anomalous scatterers ..

Anomalous scattering of neutrons and synchrotron radiation. The multiwavelength method ..

2.4.5.1.Neutron anomalous scattering.. .
2.4.5.2.Anomalous scattering of synchrotron radlatlon

B. B. ZvYaGIN AND D. L. DORSET)

2.5.1.

Foreword(J. M. CowLEY) ..

2.5.2. Electron diffraction and electron microscopy(J. M. CowLEY)

2.5.2.1.Introduction

2.5.2.2.The interactions of electrons Wlth matter
2.5.2.3.Recommended sign conventions.. .
2.5.2.4.Scattering of electrons by crystals; apprOX|mat|ons .
2.5.2.5.Kinematical diffraction formulae ..

XV

274
274

275
275

276

276
277

277
278
279

280
281



2.5.3.

2.5.4.

2.5.5.

2.5.6.

2.5.7.

CONTENTS

2.5.2.6.Imaging with electrons .. .. . C e e e e e e e e e e e 282
2.5.2.7.lmaging of very thin and weakly scatterrng object.s e e e e e e e e e e e e 283
2.5.2.8.Crystal structure imaging .. .. .. . o oo e e e e e e e e e e e e 284
2.5.2.9.Image resolution .. .. .. e e e e e e e e e e e e 284
2.5.2.10.Electron diffraction in electron mrcroscopes e - 285
Table 2.5.2.1Standard crystallographic and alternative crystallographrc sign conventions for electron drffractron . 280
Space-group determination by convergent-beam electron diffractio®. Goopman) .. .. .. .. . . . . . . . 285
2.53.LINtroduction .. .. . o e e e e e e e e e e e e e e e 285
2531.1CBED .. .. .. e e e e e e e e e e e e e e 285
2.5.3.1.2.Zone-axis patterns from CBED e e e e e e e e e e e e e 286
2.5.3.2.Background theory and analytical approach .. .. .. .. . . . . o L oo e e e 286
2.5.3.2.1Direct and reciprocity symmetries: types land Il.. .. .. .. . . . . . . L o Lo L. 286
2.5.3.2.2Reciprocity and Friedel's law .. .. .. .. .. . . . oo e e e e e e 287
2.5.3.2.3In-disc sSymmetries .. .. .. .. o e e e e e e e e e e e e e e 287
2.5.3.2.4 Zero-layer absences.. .. .. e e e e e e e e e e e e e e 288
2.5.3.3.Pattern observation of individual symmetry eIements e e e e e e e e e 288
2.5.3.4.Auxiliary tables .. .. .. e e e e 289
2.5.3.5.Space-group analyses of srngle crystals experlmental procedure and publrshed examples e e e 2901
2.5.3.5.1Stages of procedure.. .. .. .. . . o e e e e e e e e e e e e 291
25352Examples .. .. .. . . . . .. e e e e e e e e e e 292
2.5.3.6.Use of CBED in study of crystal defects, twins and non-classical crystallography T, 292
2.5.3.7.Present limitations and general conclusions .. .. .. .. .. . . . o o e e e e e e 295
2.5.3.8.Computer programs available .. .. .. .. . . 295
Table 2.5.3.1Listing of the symmetry elements relat|ng to CBED patterns under the classmcatrons of vert|cal’ o,
‘horizontal’ (IlI) and combined or roto-inversionary axes .. .. 286

Table 2.5.3.2Diagrammatic illustrations of the actions of five types of symmetry elements (grven in the Iast column
in Volume A diagrammatic symbols) on an asymmetric pattern component, in relation to the centre of the
pattern atKy,, = 0, shown as ‘@', or in relation to the centre of a diffraction order &Koy =0, shown

as‘'+ .. 288
Table 2.5.3.3Diffraction p0|nt group tables g|V|ng Whole pattern and central beam pattern symmetrles in terms of BESR

diffraction-group symbols and diperiodic group symbols .. .. .. . - 290
Table 2.5.3.4Tabulation of principal-axis CBED pattern symmetries against relevant space groups grven as IT A numbers296
Table 2.5.3.5Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions.. .. .. 298
Electron-diffraction structure analysis (EDSA)(B. K. VAINSHTEIN AND B. B. ZVYAGIN) .. .. .. . . .« .« o .« . . 306
2.5.4.1.Introduction .. .. e e e e e e e e e e e e e e e e e e e e e 306
2.5.4.2.The geometry of ED patterns e e e e e e e e e e e e e e 306
2.5.4.3.Intensities of diffraction beams. .. .. .. .. . L L Lo e e e e e e 308
2.5.4.4.Structure analysiS.. .. .. . . o e e e e e e e e e e e 309
Image reconstruction(B. K. VAINSHTEIN) .. .. . oo oo wo e e e e e ee e e e e e e e e e e 310
2.5.5.1.Introduction .. .. e e e e e e e e e e e 310
2.5.5.2.Thin weak phase objects at optlmal defocus e e e e e e e e e e e 311
2.5.5.3.An account of absorption .. .. .. .. L e e e e e e 312
2554 Thick crystals .. .. .. .. . o e e e e e e e e e e e 312
2.55.5.lmage enhancement.. .. .. .. .. . o e e e e e e e e e e e e 313
Three-dimensional reconstructionB. K. VAINSHTEIN) .. .. . oo wv v e e e e ae e e e e e e e e 315
2.5.6.1.The object and its projection .. .. .. .. . . o e e e e e e e e 315
2.5.6.2.0rthoaxial projection.. .. .. .. .. . . o e e e e e e e e e e e e e 316
2.5.6.3.Discretization .. .. .. c e e e e e e e e e e e e e e 317
2.5.6.4.Methods of direct reconstructlon e e e e e e e e e e e e 317
2.5.6.5.The method of back-projection. .. .. .. .. . . . Lo e e e e e 318
2.5.6.6.The algebraic and iteration methods.. .. .. .. .. . . . o L oo n e e e e 318
2.5.6.7.Reconstruction using Fourier transformation .. .. .. .. .. . . . o o e e e e e e e 318
2.5.6.8.Three-dimensional reconstruction in the general case .. .. .. .. . . .« . « & o o e e e 319
Direct phase determination in electron crystallography(D. L. DORSET) .. .. . o oo wv we e ee e e e e 320
2.5.7.1.Problems with ‘traditional’ phasing techniques .. .. .. .. .. . . . o o o0 e e e e e 320
2.5.7.2.Direct phase determination from electron micrographs.. .. .. .. . . . . . . o . o oo . 321
2.5.7.3.Probabilistic estimate of phase invariant sums. .. .. .. .. . . . o o e e e e e 322
25.7.4.Thetangent formula .. .. .. .. .. . . L e e e e e e e e e e e 323
2.5.7.5.Density modification .. .. .. .. . o e e e e e e e e e e e e e e 324
2.5.7.6.Convolution techniques .. .. .. P 324
2.5.7.7.Maximum entropy and Ilkellhood e e e e e e e e e e e e e e e 325

XVi



2.5.7.8.Influence of multiple scattering on direct electron crystallographic structure analysis ..

References

PART 3. DUAL BASES IN CRYSTALLOGRAPHIC COMPUTING

CONTENTS

3.1. Distances, angles, and their standard uncertaintie®. E. SANDs)

3.1.1. Introduction ..
3.1.2. Scalar product ..

3.1.3. Length of a vector ..

3.1.4. Angle between two vectors ..

3.1.5. Vector product ..

3.1.6. Permutation tensors

3.1.7. Components of vector product ..
3.1.8. Some vector relationships
3.1.8.1.Triple vector product ..

3.1.9.

3.1.8.2.Scalar product of vector products..
3.1.8.3.Vector product of vector products..

Planes ..

3.1.10. Variance—covariance matrices..

3.1.11. Mean values
3.1.12. Computation

3.2. The least-squares planéR. E. MARSH AND V. SCHOMAKER)

3.2.1. Introduction ..
3.2.2. Least-squares plane based on uncorrelated, isotropic weights..

3.2.2.1.Error propagation ..

3.2.2.2.The standard uncertainty of the dlstance from an atom to the plane

3.2.3. The proper least-squares plane, with Gaussian weights..

3.2.3.1.Formulation and solution of the general Gaussian plane ..

3.2.3.2.Concluding remarks ..
Appendix 3.2.1 ..

3.3. Molecular modelling and graphics(R. DiamonD)

3.3.1. Graphics ..
3.3.1.1.Coordinate systems, notation and standards ..
3.3.1.1.1.Cartesian and crystallographic coordinates.

3.3.1.1.2Homogeneous coordinates..
3.3.1.1.3.Notation
3.3.1.1.4Standards ..

3.3.1.2.0rthogonal (or rotation) matrices ..

3.3.1.2.1.General form ..

3.3.1.2.2. Measurement of rotatlons and stralns from coordlnates

3.3.1.2.3.0rthogonalization of impure rotations

3.3.1.2.4 Eigenvalues and eigenvectors of orthogonal matrlces .

3.3.1.3.Projection transformations and spaces ..

3.3.1.3.1.Definitions ..
3.3.1.3.2.Translation ..
3.3.1.3.3.Rotation
3.3.1.3.4.Scale

3.3.1.3.5.Windowing and perspectlve. .

3.3.1.3.6.Stereoviews
3.3.1.3.7.Viewports .
3.3.1.3.8.Compound transformatlons.
3.3.1.3.9.Inverse transformations..
3.3.1.3.10.The three-axis joystick..
3.3.1.3.11.Other useful rotations ..
3.3.1.3.12.Symmetry ..

XVii

325
327

347

348
348
348
348

348
349
349

349
349

349
349
349

349
350

351

352

353
353
353

353
355

355

356
358

358

360
360

360

360
360
361
361

361

361
364
367
367

367

367
368
368
368
368
370
370
371
372
372
373
373



CONTENTS

3.3.1.4.Modelling transformations ..
3.3.1.4.1.Rotation about a bond ..
3.3.1.4.2. Stacked transformations.
3.3.1.5.Drawing techniques ..
3.3.1.5.1.Types of hardware
3.3.1.5.2.Optimization of line drawmgs .
3.3.1.5.3 Representation of surfaces by lines..
3.3.1.5.4 Representation of surfaces by dats .
3.3.1.5.5.Representation of surfaces by shadlng . .
3.3.1.5.6.Advanced hidden-line and hidden-surface algorlthms .

3.3.2. Molecular modelling, problems and approaches

3.3.2.1.Connectivity .
3.3.2.1.1.Connectivity tables
3.3.2.1.2Implied connectivity ..

3.3.2.2.Modelling methods .
3.3.2.2.1 Methods based on conformatlonal varlables .
3.3.2.2.2Methods based on positional coordinates ..
3.3.2.2.3. Approaches to the problem of multiple minima ..

3.3.3. Implementations

3.3.3.1.Systems for the display and modification of retrieved data.
3.3.3.1.1.0RTEP . .
3.3.3.1.2.Fe|dmann s system .
3.3.3.1.3Lesk & Hardman software ..
3.3.3.1.4GRAMPS
3.3.3.1.5.Takenaka & Sasadas system
3.3.3.1.6 MIDAS .. .
3.3.3.1.7.Insight
3.3.3.1.8.PLUTO .
3.3.3.1.9.MDKINO .
3.3.3.2.Molecular-modelling systems based on electron den5|ty .
3.3.3.2.1.CHEMGRAF
3.3.3.2.2GRIP .
3.3.3.2.3Barry, Denson & North S systems
3.3.3.24MMS-X .. "
3.3.3.2.5.Texas A&M Unlver5|ty system .
3.3.3.2.6.Bilder -
3.3.3.2.7 Frodo
3.3.3.2.8.Guide
3.3.3.2.9HYDRA ..
3.3.3.2.100 .o
3.3.3.3.Molecular-modelling systems based on other criteria ..
3.3.3.3.1.Molbuild, Rings, PRXBLD and MM2/MMP2 ..
3.3.3.3.2.Script e e e e e
3.3.3.3.3.CHARMM .
3.3.3.3.4.Commercial systems..

3.4. Accelerated convergence treatment @@ " lattice sums(D. E. WILLIAMS) ..
3.4.1. Introduction ..
3.4.2. Definition and behaviour of the direct-space sum .

Table 3.4.2.1Untreated lattice-sum results for the Coulombic energy=(h) of sodium chloride (kJ mot A) the
lattice constant is taken as 5.628 A . . e
Table 3.4.2.2Untreated lattice-sum results for the dlspersmn energy:(ﬁ) of crystalllne benzene (kJ m6l A)

3.4.3. Preliminary description of the method

3.4.4. Preliminary derivation to obtain a formula which accelerates the convergence of aR™ sum over lattice points X(d)
3.4.5. Extension of the method to a composite lattice..

3.4.6. The case ok = 1 (Coulombic lattice energy)

3.4.7. Thecasesai =2 andn =3

3.4.8. Derivation of the accelerated convergence formulaia the Patterson function ..

3.4.9. Evaluation of the incomplete gamma function ..

XViii

373

373
373

374

374
375
375
375
375

376

377

377

377
377

377
378
379
379

380

380

380
380

381
381

381
381
381
381
381

381

381
382
382
382
382
382
383
383
383
384

384

384
384
384

384

385

385
385

385
386

385
386
388
389
389
389
390



CONTENTS

3.4.10. Summation over the asymmetric unit and elimination of intramolecular energy terms..
3.4.11. Reference formulae for particular values ofi ..
3.4.12. Numerical illustrations

Table 3.4.12.1Accelerated-convergence results for the Coulombic sum Lr) of sodium chloride (kJ mot, A): the direct
sum plus the constant term .

Table 3.4.12.2The reciprocal-lattice results (kJ mdi A) for the Coulomblc sum (Et: 1) of sodrum chlonde

Table 3.4.12.3Accelerated-convergence results for the dispersion sue @) of crystalline benzene (kJ mol A) the
figures shown are the direct-lattice sum plus the two constant terms.

Table 3.4.12.4The reciprocal-lattice results (kJ mdl, A) for the dispersion sum (& 6) of crystallrne benzene

Table 3.4.12.5Approximate time (s) required to evaluate the dispersion surs @) for crystalline benzene within
0.001 kJ mot* truncation error .. -

References

PART 4. DIFFUSE SCATTERING AND RELATED TOPICS

4.1.

4.2.

Thermal diffuse scattering of X-rays and neutrongB. T. M. WILLIS)
4.1.1. Introduction ..
4.1.2. Dynamics of three-dimensional crystals ..

4.1.2.1.Equations of motion ..
4.1.2.2.Quantization of normal modes Phonons
4.1.2.3.Einstein and Debye models.
4.1.2.4.Molecular crystals

4.1.3. Scattering of X-rays by thermal vibrations
4.1.4. Scattering of neutrons by thermal vibrations
4.1.5. Phonon dispersion relations ..

4.1.5.1.Measurement with X-rays ..
4.1.5.2.Measurement with neutrons. .
4.1.5.3.Interpretation of dispersion relations..

4.1.6. Measurement of elastic constants ..

Disorder diffuse scattering of X-rays and neutrongH. Jacobzinski AND F. FrEY)
4.2.1. Scope of this chapter ..

4.2.2. Summary of basic scattering theory

4.2.3. General treatment ..

4.2.3.1.Qualitative interpretation of diffuse scattering..

4.2.3.1.1.Fourier transforms
4.2.3.1.2 Applications

4.2.3.2.Guideline to solve a disorder problem .
4.2.4. Quantitative interpretation
4.2.4.1.Introduction
4.2.4.2.0ne-dimensional dlsorder of ordered Iayers .
4.2.4.2.1.Stacking disorder in close-packed structures ..
4.2.4.3.Two-dimensional disorder of chains ..

4.2.4.3.1.Scattering by randomly distributed coIIrnear chalns
4.2.4.3.2 Disorder within randomly distributed collinear chains ..
4.2.4.3.2.1General treatment ..
4.2.4.3.2.2Orientational disorder ..
4.2.4.3.2.3Longitudinal disorder . - .
4.2.4.3.3.Correlations between different almost collinear chalns e e
4.2.4.4.Disorder with three-dimensional correlations (defects, local ordering and clustenng) "
4.2.4.4.1.General formulation (elastic diffuse scattering)
4.2.4.4.2 Random distribution .. .
4.2.4.4.3.Short-range order in multi- component systems .
4.2.4.4.4 Displacements: general remarks ..
4.2.4.4.5Distortions in binary systems ..
4.2.4.4.6.Powder diffraction "
4.2.4.4.7.Small concentrations of defects .

XiX

390
390
391

391
392

392
392

392
393

399

400
400
400

401
402
402
402

402
404
405

405
405
405

406

407
407
408
410

410

410
411

418
420

420
421

423
425

425

427
427
427
428

429
429

429
431

432
432
433
435
435



CONTENTS

4.2.4.4.8Cluster method .. .. .. . e e e e e e e e e e e 435
4.2.4.4.9.Comparison between X-ray and neutron methods e e e e e e e e e e 435
4.2.4.4.10Dynamic properties of defects .. .. .. .. . oL ol e e e e e 436

4.2.4.5.0rientational disorder .. .. .. .. . o e e e e ek e e e e e e e 436

4.2.4.5.1.General expressions.. .. .. C e e e e e e e e e e e e e e e e 436
4.2.4.5.2 Rotational structure (form) factor e e e e e e e e e e e 437
4.2.4.5.3.Short-range correlations. .. .. .. . . oo o e e e e e e e e e e e e 438

4.2.5. Measurement of diffuse scattering.. .. .. .. .. . e e e e e e e e e e e e 438

4.3. Diffuse scattering in electron diffraction (J. M. CoWLEY AND J. K. GI@NNES) .. .. wo e v e o e ee e e e e e 443
4.3.1. Introduction .. .. .. o e e e e e e e e e 443
4.3.2. Inelastic scattering .. .. .. .. . o o e e e e e e e e e e e e e e e e e e e e 444
4.3.3. Kinematical and pseudo-kinematical scattering.. .. .. .. .. .. . . o oo e e e e e e 445
4.3.4. Dynamical scattering: Bragg scattering effects.. .. .. .. . . . . L L oo e e e e 445
4.3.5. Multislice calculations for diffraction and imaging .. .. .. .. . . o o oo e e e e e 447
4.3.6. Qualitative interpretation of diffuse scattering of electrons .. .. .. .. .. . . . . oo e e 447

4.4. Scattering from mesomorphic Structure(P. S. PERSHAN) .. .. . oo oo i er o e e e e e e e e e e 449

440, IntrodUCtiON .. .. .. oo e e e e e e e e e e e e e e e e e e 449
Table 4.4.1.1Some of the symmetry properties of the series of three-dimensional phases described in Fig. 4.4.1.1 449
Table 4.4.1.2The symmetry properties of the two-dimensional hexatic and crystalline phases. .. .. .. .. .. .. . 450

4.4.2. The nematic phase.. .. .. .. . . o o o e e e e e e e e e e 451
Table 4.4.2.1Summary of critical exponents from X-ray scattering studies of the nematic to smectic-A phase transition 453

4.4.3. Smectic-A and smectic-C phases .. .. .. .. . o e e e e e e e e e e e e 453
4.4.3.1.Homogeneous smectic-A and smectic-C phases.. .. .. .. .. . . .« o o e e e e 453

4.4.3.2.Modulated smectic-A and smectic-C phases .. .. .. .. .. . . o e e e e e 455
4.4.3.3.Surface effeCcts.. .. .. .. . e e e e e e e e e e e e e e e e 455

4.4.4. Phases with in-plane order .. .. .. .. . . o e e e e e e e e e e e e e 456
4.4.4.1 Hexatic phases in two dimensions .. .. .. .. . . . o o e e e 457
4.4.4.2 Hexatic phases in three dimensions.. .. .. .. .. . o o o e a e e e e e e e e 458

4.4.4.2.1 Hexatic-B .. .. e e e e e e e e e e e e 458
4.4.4.2.2 Smectic-F, smectlcl e e e e e e e e e e e e e e e e e 458

4.4.4.3.Crystalline phases with molecular rotation.. .. .. .. .. .. . & .« & 0 e e e e e e 460

4.443.1Crystal-B .. .. . e e e e e e e e e e e e e e e 460
4.4.4.3.2Crystal-G, crystal-J .. .. .. . e e e e e e e e e e e e e e e e e 462

4.4.4.4 Crystalline phases with herringbone packmg e e e e e e e e e e e e e e 462
A4.4A401Crystal-E .. .. e e e e e e e e e e e e e e 462
4.4.4.42Crystal-H, crystal-K .. .. .. .. . o e e e e e e e e 463

4.4.5. DISCOLIC PRaSES .. .. .. oo i i i i e e e e e e e e e e e e e 463
4.4.6. Other phases .. .. .. . o o o e e e e e e e e e e e e e e e e e 463
4.4.7. Notes added in proof to first edition .. .. .. .. . . L Lo e e e e e e e e 464

4.4.7.1.Phases with intermediate molecular tilt: smectic-L, crystalline-M,N.. .. .. .. . . . . . . . . . . 464
4.4.7.2.Nematic to smectic-A phase transition .. .. .. .. .. . . . o e e e e e e e e 464

4.5. Polymer crystallography (R. P. MILLANE AND D. L. DORSET) .. .. wo i o o e e ae ae e e e e e e e e e 466
4.5.1. Overview(R. P. MILLANE AND D. L. DORSET) .. .. o« o wi e ai e ae e ae e ae e e e e e e e e e 466
4.5.2. X-ray fibre diffraction analysis (R. P. MILLANE) .. .. .. . oo oo oo ei wi e e e e e e e e e e e 466

4.5.2.1.IntroducCtion .. .. .. e e e e e e e e e e e e e e e e e e e 466
4.5.2.2 Fibre specimens .. .. . e e e e e e e e e e e e e e 467
4.5.2.3.Diffraction by helical structures c e e e e e e e e e e e 467
4.5.2.3.1 Helix symmetry .. .. e e e e e e e e e e e e e e 467
4.5.2.3.2 Diffraction by helical structures O, 468
4.5.2.3.3 Approximate helix symmetry .. .. .. . . . oo e e e e e e e 469
4.5.2.4.Diffraction by fibres .. .. .. . L L e e e e e e e e e e e 469
4.5.2.4.1.Noncrystalline flbres e e e e e e e e e e e e e e e e e e 469
45.2.4.2 Polycrystalline fibres.. .. .. .. . . oo e e e e e e 469
4.5.2.4.3Random COPOlYMErS.. .. .. .. . o e e e e e e e e e e 470

XX



CONTENTS

4.5.2.4.4 Partially crystalline fibres

4.5.2.5.Processing diffraction data ..

4.5.2.6.Structure determination ..
4.5.2.6.1.0verview . .
4.5.2.6.2.Helix symmetry, ceII constants and space group symmetry .
4.5.2.6.3.Patterson functions ..
4.5.2.6.4Molecular model building
4.5.2.6.5.Difference Fourier synthesis .. .
4.5.2.6.6.Multidimensional isomorphous replacement .
4.5.2.6.7.Other techniques ..
4.5.2.6.8.Reliability

4.5.3. Electron crystallography of polymers(D. L. DORSET)
4.5.3.1.Is polymer electron crystallography possible?..
4.5.3.2.Crystallization and data collection.

4.5.3.3.Crystal structure analysis .
4.5.3.4.Examples of crystal structure analyses

Table 4.5.3.1Structure analysis of poly-methyli.- glutamate in theB form
4.6. Reciprocal-space images of aperiodic crysta(3V. STEURER AND T. HAIBACH) ..

4.6.1. Introduction ..
4.6.2. Then-dimensional description of aperiodic crystals

4.6.2.1.Basic concepts.. .
4.6.2.2.1D incommensurately modulated structures .
4.6.2.3.1D composite structures..

4.6.2.4.1D quasiperiodic structures.. .
4.6.2.5.1D structures with fractal atomic surfaces

Table 4.6.2.1Expansion of the Fibonacci sequence :Ba”(L) by repeated action of the substltutlon rube S—> L,

L—-LS .

4.6.3. Reciprocal-space images..

4.6.3.1.Incommensurately modulated structures (IMSs) ..
4.6.3.1.1.Indexing .
4.6.3.1.2 Diffraction symmetry
4.6.3.1.3.Structure factor
4.6.3.2.Composite structures (CSs).
4.6.3.2.1.Indexing .
4.6.3.2.2 Diffraction symmetry
4.6.3.2.3.Structure factor
4.6.3.3.Quasiperiodic structures (QSs). . .
4.6.3.3.1.3D structures with 1D quasiperiodic order
4.6.3.3.1.1Indexing .
4.6.3.3.1.2Diffraction symmetry
4.6.3.3.1.3Structure factor ..
4.6.3.3.1.4Intensity statistics ..

4.6.3.3.1.5Relationships between structure factors at symmetry related p0|nts of the Founer |mage

4.6.3.3.2.Decagonal phases.
4.6.3.3.2.1Indexing .
4.6.3.3.2.2Diffraction symmetry
4.6.3.3.2.3Structure factor ..
4.6.3.3.2.4Intensity statistics ..

4.6.3.3.2.5Relationships between structure factors at symmetry reIated p0|nts of the Founer |mage

4.6.3.3.3.Icosahedral phases ..
4.6.3.3.3.1Indexing .
4.6.3.3.3.2Diffraction symmetry
4.6.3.3.3.3Structure factor ..
4.6.3.3.3.4Intensity statistics ..

4.6.3.3.3.5Relationships between structure tactors at symmetry related pomts of the Founer |mage
Table 4.6.3.13D point groups of order k describing the diffraction symmetry and corresponding 5D decagonal space

groups with reflection conditions (see Rabson et al., 1991)

Table 4.6.3.23D point groups of order k describing the diffraction symmetry and correspondlng 6D decagonal space
groups with reflection conditions (see Levitov & Rhyner, 1988; Rokhsar et al.,

XXi

1988)..

471

472
474
474
475
475
476
477
478
479
480

481

481
481
482
483

483
486
486
487

487
487

489

490
493

491
494

494
495
495
496
497
498
498
498
498

498
499
499
500
501

501

503
505
505
506
507

508

509
511
512
512
513
514

507

514



CONTENTS

4.6.4. Experimental aspects of the reciprocal-space analysis of aperiodic crystals .. .. .. .. .. . . . . . . . . 516

4.6.4.1.Data-collection strategies .. .. .. e e e e e e e e e e e e 516
4.6.4.2.Commensurability versus mcommensurabrlrty e e e e e e e e e e e e 517
4.6.4.3.Twinning and nanodomain structures. .. .. .. e 517

Table 4.6.4.1Intensity statistics oflthe Fibonacci chaln for a total of 161322 reflectlons wrttO00< h < 1000
and 0<SINO/A <2 A . o i i e e e e e e e e e e e e e e e e e e 516

RefErenCes .. .. .. . i o e e e e e e e e e e e e e e e e e e e e 519

PART 5. DYNAMICAL THEORY AND ITS APPLICATIONS e e e e e e 533

5.1. Dynamical theory of X-ray diffraction (A. AUTHIER) .. .. .. o i i i i i ei e e e e e e e e e e 534
5.1.1. Introduction .. .. .. . o e e e e e e e e e e e e e e e e 534
5.1.2. Fundamentals of plane-wave dynamical theory. .. .. .. .. . . . . o o o e e e e 534

5.1.2.1.Propagation equation. .. .. .. .. . . o e e e e e e e e e e e e e e e 534
5.1.2.2. Wavefields .. .. .. e e e e e e e e e e e 535
5.1.2.3.Boundary conditions at the entrance surface e e e e e e e e e e e e 536
5.1.2.4.Fundamental equations of dynamical theory .. .. .. .. .. . . . o o oo e e e e e 536
5.1.2.5.Dispersion surface .. .. .. .. . e e e e e e e e e 536
5.1.2.6.Propagation direCtion .. .. .. .. . . e e e e e e e e e e e e 537
5.1.3. Solutions of plane-wave dynamical theory .. .. .. .. . . . L oo e e 538

5.1.3.1.Departure from Bragg's law of the incident wave.. .. .. .. .. . . . . . oo 538

5.1.3.2.Transmission and reflection geometries.. .. .. .. .. . . . o o o e e e e 538
5.1.3.3.Middle of the reflection domain. .. .. .. .. .. . . o o e e e e e e e e 539
5.1.3.4.Deviation parameter .. .. .. G e e e e e e e e e e e e e e e 539
5.1.3.5.Pendellsung and extinction dlstances e e e e e e e e e e e e 539
5.1.3.6.Solution of the dynamical theory .. .. .. e e e e e e e 540
5.1.3.7.Geometrical interpretation of the solution in the zero- absorptron CASE .. v i e e e e e 540

5.1.3.7.1.Transmission gEOMELIY .. .. .. .. . oo oo wi i e e e e e e e e e e 540

5.1.3.7.2Reflection geometry .. .. .. .. . . oo e e e e e e 541
5.1.4. Standing WaveS .. .. .. . . i e e e e e e e e e e e e e e e e e e e 541
5.1.5. Anomalous absorption .. .. .. . . o e e e e e e e e e e e e e e 541
5.1.6. Intensities of plane waves in transmission geometry .. .. .. .. .. . o o o e e e e e e e 541

5.1.6.1.Absorption coefficient .. .. 541
5.1.6.2.Boundary conditions for the amplltudes at the entrance sun‘ace |ntenS|t|es of the reflected and refracted waves 542
5.1.6.3.Boundary conditions at the exit surface.. .. .. .. .. . . . o oo e e e e e e 542

5.1.6.3.1.Wavevectors .. .. . G e e e e e e e e e e e e e e e e e e 542
51632Amp||tudes—PendeIk1ung e e e e e e e e e e e e 543

5.1.6.4.Reflecting power .. .. .. .. . o e e e e e e e e e e e 543
5.1.6.5.Integrated intensity .. .. .. . o o e e e e e e e e e e e e e e e e e e 544

5.1.6.5.1.Non- absorbrngcrystals e e e e e e e e e e e e e e e 544
5.1.6.5.2. Absorbing crystals .. .. .. e e e e e e e e e e e e e e 545

5.1.6.6.Thin crystals — comparison with geometrrcal theory e e e e e e e e e e 545
5.1.7. Intensity of plane waves in reflection geometry.. .. .. .. .. . . . o o e e e e e e e 545

5.1.7.1.Thick crystals .. .. .. .. e e e e e e e e e e e e e e e e e e e e 545

5.1.7.1.1 Non- absorblngcrystals e e e e e e e e e e e e e e 545
5.1.7.1.2Absorbing crystals .. .. .. .. . . o e e e e e e e e e 546

5.1.7.2.Thincrystals .. .. .. e e e e e e e e e e e e e e e e e e 546
5.1.7.2.1.Non-absorbing crystals e e e e e e e e e e e e e e e e e 546

5.1.7.2.2 Absorbing crystals .. .. .. . . Lo e e e e e e 547

5.1.8. Real Waves .. .. .. .. . o e e e e e e e e e e e e e e e 548

5.1.8.LINtroduCtion .. .. .. . o e e e e e e e e e e e e e e e e e e 548
5.1.8.2.Borrmanntriangle .. .. .. . o e e e e e e e e e e e e e e e 548
5.1.8.3.Spherical-wave PendéBoing .. .. .. .. . e e e e e e e 549
Appendix 5.1.1 .. .. e e e e e e e e e e e e e e e e e e e e 550

A5.1.1.1.Dielectric susceptibility — classical derivation. .. .. .. .. .. . . o oo e e e 550
A5.1.1.2.Maxwell's equations .. .. .. .. . o e e e e e e e e e e e e e e e 550
A5.1.1.3.Propagation equation .. .. .. .. .. . e e e e e e e e e e e e e e e e e e 551

XXii



CONTENTS
A5.1.1.4.Poynting vector ..

5.2. Dynamical theory of electron diffraction (A. F. Moobikg, J. M. CowLEY AND P. GOODMAN)

5.3.

5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.
5.2.7.
5.2.8.
5.2.9.

Introduction ..

The defining equations

Forward scattering ..

Evolution operator ..

Projection approximation — real-space solution..
Semi-reciprocal space..

Two-beam approximation

Eigenvalue approach ..

Translational invariance ..

5.2.10. Bloch-wave formulations

5.2.11. Dispersion surfaces ..
5.2.12. Multislice
5.2.13. Born series ..

5.2.14. Approximations

Dynamical theory of neutron diffraction (M. SCHLENKER AND J.-P. GUIGAY)

5.3.1.
5.3.2.

5.3.3.

5.3.4.
5.3.5.
5.3.6.
5.3.7.

Introduction ..
Comparison between X-rays and neutrons with spin neglected.

5.3.2.1.The neutron and its interactions .. .
5.3.2.2.Scattering lengths and refractive index ..
5.3.2.3.Absorption .. .
5.3.2.4.Differences between neutron and X ray scatterlng .
5.3.2.5.Translating X-ray dynamical theory into the neutron case ..

Neutron spin, and diffraction by perfect magnetic crystals ..

5.3.3.1.Polarization of a neutron beam and the Larmor precession in a uniform magnetic field
5.3.3.2.Magnetic scattering by a single ion having unpaired electrons

5.3.3.3.Dynamical theory in the case of perfect ferromagnetic or collinear fernmagnetlc crystals.

5.3.3.4.The dynamical theory in the case of perfect collinear antiferromagnetic crystals.
5.3.3.5.The flipping ratio ..

Extinction in neutron diffraction (non-magnetic case)

Effect of external fields on neutron scattering by perfect crystals ..
Experimental tests of the dynamical theory of neutron scattering..
Applications of the dynamical theory of neutron scattering ..

5.3.7.1.Neutron optics .. .
5.3.7.2.Measurement of scatterlng Iengths by Pendnlhug effects
5.3.7.3.Neutron interferometry .. ..
5.3.7.4.Neutron diffraction topography and other |mag|ng methods .

References

Author index

Subject index ..

XXxiii

551
552
552
552
552
552
553
553
553
554
554
555
555
555
555
556

557
557
557

557
557
558
558
558

558

558
559
560
561
561

561
562
562
563

563
563

563
564

565

571

580



Preface

By URt SHMUELI

The purpose of Volume B ofnternational Tables for Crystal- The obviously delayed publication of Volume B is due to
lographyis to provide the user or reader with accounts of sonseveral reasons. Some minor delays were caused by a requirement
well established topics, of importance to the science of crystéhat potential contributors should be approved by the Executive
lography, which are related in one way or another to the concef@smmittee prior to issuing relevant invitations. Much more
of reciprocal lattice and, more generally, reciprocal space. Effodsrious delays were caused by authors who failed to deliver their
have been made to extend the treatment of the various topicEomtributions. In fact, some invited contributions had to be
include X-ray, electron, and neutron diffraction techniques, amccluded from this first edition of Volume B. Some of the topics
thereby do some justice to the inclusion of the present Volumehere treated are greatly extended, considerably updated or modern
the new series odfnternational Tables for Crystallography versions of similar topics previously treated in the old Volumes I,
An important crystallographic aspect of symmetry in reciprocdll, and V. Most of the subjects treated in Volume B are new to
space, space-group-dependent expressions of trigonometric sthoternational Tables
ture factors, already appears in Volume liofernational Tables | gratefully thank Professor A. J. C. Wilson, for suggesting that
for X-ray Crystallography and preliminary plans for incorpor- 1 edit this Volume and for sharing with me his rich editorial
ating this and other crystallographic aspects of reciprocal spaceiperience. | am indebted to those authors of Volume B who took
the new edition ofinternational Tablesdate back to 1972. my requests and deadlines seriously, and to the Computing Center
However, work on a volume dhternational Tables for Crystal- of Tel Aviv University for computing facilities and time. Special
lography, largely dedicated to the subject of reciprocal spacthanks are due to Mrs Z. Stein (Tel Aviv University) for skilful
began over ten years later. The present structure of Volume Baasistance in numeric and symbolic programming, involved in my
determined in the years preceding the 1984 Hamburg congressanftributions to this Volume.
the International Union of Crystallography (IUCr), is due to | am most grateful to many colleagues—crystallographers for
(i) computer-controlled production of concise structure-fact@ncouragement, advice, and suggestions. In particular, thanks are
tables, (i) the ability to introduce many more aspects afue to Professors J. M. Cowley, P. Goodman and C. J.
reciprocal space — as a result of reducing the effort of producirlmmphreys, who served as Chairmen of the Commission on
the above tables, as well as their volume, and (iii) suggestioBctron Diffraction during the preparation of this Volume, for
by the National Committees and individual crystallograprompt and expert help at all stages of the editing. The kind
phers of some additional interesting topics. It should kessistance of DrJ. N. King, the Executive Secretary of the IUCr, is
pointed out that the initial plans for the present Volume aralso gratefully acknowledged. Last, but certainly not least, | wish
Volume C Mathematical, Physical and Chemical Tahlestothank Mr M. H. Dacombe, the Technical Editor of the IUCr, and
edited by Professor A. J. C. Wilson), were formulated arfus staff for the skilful and competent treatment of the variety of
approved during the same period. drafts and proofs out of which this Volume arose.

Preface to the second edition

By Uri SHMUELI

The first edition of Volume B appeared in 1993, and was followeadicroscopy and diffraction in crystal structure determination. The
by a corrected reprint in 1996. Although practically all thdatter topic is here enhanced by applications of direct methods to
material for the second edition was available in early 1997, itdectron crystallography.
publication was delayed by the decision to translate all of VolumePart 3,Dual Bases in Crystallographic Computindeals with
B, and indeed all the other volumes loiternational Tables for applications of reciprocal space to molecular geometry and ‘best’-
Crystallography to Standard Generalized Markup Languagplane calculations, and contains a treatment of the principles of
(SGML) and thus make them available also in an electronic formolecular graphics and modelling and their applications; it
suitable for modern publishing procedures. concludes with the presentation of a convergence-acceleration
During the preparation of the second edition, most chapters thatthod, of importance in the computation of approximate lattice
appeared in the first edition have been corrected and/or revisgans.
some were rather extensively updated, and five new chapters wereart 4 contains treatments of various diffuse-scattering
added. The overall structure of the second edition is outlinpthienomena arising from crystal dynamics, disorder and low
below. dimensionality (liquid crystals), and an exposition of the under-
After an introductory chapter, Part 1 presents the reader with lging theories and/or experimental evidence. The new additions to
account of structure-factor formalisms, an extensive treatmenttbis part are treatments of polymer crystallography and of
the theory, algorithms and crystallographic applications of Fouriezciprocal-space images of aperiodic crystals.
methods, and treatments of symmetry in reciprocal space. ThesPart 5 contains introductory treatments of the theory of the
are here enriched with more advanced aspects of representatiotesaction of radiation with matter, the so-called dynamical
of space groups in reciprocal space. theory, as applied to X-ray, electron and neutron diffraction
In Part 2, these general accounts are followed by detailegthniques. The chapter on the dynamical theory of neutron
expositions of crystallographic statistics, the theory of dirediffraction is new.
methods, Patterson techniques, isomorphous replacement aridam deeply grateful to the authors of the new contributions for
anomalous scattering, and treatments of the role of electnoraking their expertise available to Volume B and for their
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excellent collaboration. | also take special pleasure in thankingThis editorial work was carried out at the School of Chemistry
those authors of the first edition who revised and updated thaitd the Computing Center of Tel Aviv University. The facilities
contributions in view of recent developments. Last but not leasttHey put at my disposal are gratefully acknowledged on my behalf
wish to thank all the authors for their contributions and theand on behalf of the IUCr. | wish to thank many colleagues for
patience, and am grateful to those authors who took my requdstsresting conversations and advice, and in particular Professor
seriously. | hope that the updating and revision of future editiodifieo Hahn with whom | discussed at length problems regarding
will be much easier and more expedient, mainly because of ttielume B andinternational Tablesn general.
new format ofinternational Tables Given all these expert contributions, the publication of this
Four friends and greatly respected colleagues who contributeslume would not have been possible without the expertise and
to the second edition of Volume B are no longer with us. These atevotion of the Technical Editors of the IUCr. My thanks go to
Professors Arthur J. C. Wilson, Peter Goodman, Verner Schdfs Sue King, for her cooperation during the early stages of the
maker and Boris K. Vainshtein. | asked Professors Michiyoshiork on the second edition of Volume B, while the material was
Tanaka, John Cowley and Douglas Dorset if they were preparedting collected, and to Dr Nicola Ashcroft, for her collaboration
answer queries related to the contributions of the late Pethrring the final stages of the production of the volume, for her
Goodman and Boris K. Vainshtein to Chapter 2.5. | am mostost careful and competent treatment of the proofs, and last but
grateful for their prompt agreement. not least for her tactful and friendly attitude.
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1.1. Reciprocal space in crystallography
By U. SHMUELI

1.1.1. Introduction whereh, k and| are relatively prime integers.¢. not having a
The purpose of this chapter is to provide an introduction to sevei: mmon factor other thaf1 or —1), known as Miller indices of the
aspects of reciprocal space, which are of general importance ice planex, y andz are the coordinates of any point lying in the
! pligne and are expressed as fractions of the magnitudes of the basis

crystallography and which appear in the various chapters A8Cctorsa, b and ¢ of the direct lattice, respectively, amdis an

sections to follow. We first summarize the basic definitions an . . . e
. . eger denoting the serial number of the lattice plane within the
briefly inspect some fundamental aspects of crystallography, w ﬁy of parall%l and equidistanthkl) planes, th% interplanar

recalling that they can be usefully and simply discussed in terms : . 3
- . L . “spacing being denoted Hdyy; the valuen = 0 corresponds to the
the concept of the reciprocal lattice. This introductory sectlonj I) piane passing through the origin.

followed by a summary of the basic relationships between the dir o =
and associated reciprocal lattices. We then introduce the elem eitnrte_ §g+dy§n§téct%2drb s_itig?ltggt;rgv%fvmgrel;y\g ;\:ﬁz
of tensor-algebraic formulation of such dual relationships, witf),;: gers, e the p Py
. . : P ice pointuvw lying in the plane (1.1.2.3), respectively, and
emphasis on those that are important in many applications h d diff f the pl li
reciprocal space to crystallographic algorithms. We proceed wit sume that andr, are different vectors. If the plane normal is
' oted byN, whereN is proportional to the vector product of two

section that demonstrates the role of mutually reciprocal base : . .
transformations of coordinates and conclude with a brief outline% Z?rlgnt?egtlr:]:gsvectors, the vector form of the equation of the lattice

some important analytical aspects of reciprocal space, most
which are further developed in other parts of this volume. N-(r—r.)=0 or N-r=N-rp. (1.1.2.4)

For equations (1.1.2.3) and (1.1.2.4) to be identical, the plane
1.1.2. Reciprocal lattice in crystallography normalN must satisfy the requirement thdt r, = n, wherenis an

. . . unrestricted) integer.
The notion of mutually reciprocal triads of vectors dates back to trQe Let us nov3 consgider the basic diffraction relatioagy(Lipson &

introduction of vector calculus by J. Willard Gibbs in the 18888( ~qchran 1966). Suppose a parallel beam of monochromatic
Wilson, 1901). This concept appeared to be useful in the eaflyjiation of wavelengthy, falls on a lattice of identical point
interpretations of diffraction from single crystals (Ewald, 191 13gatterers. If it is assumed that the scattering is elagtithere is

Laue, 1914) and its first detailed exposition and the recognition of change of the wavelength during this process, the wavevectors of
its importance in crystallography can be found in Ewald’s (19246 jcident and scattered radiation have the same magnitude, which
article. The following free translation of Ewald’s (1921) introduc;

: di hat diff X lElan conveniently be taken agXL A consideration of path and phase
tion, presented in a somewhat different notation, may serve erences between the waves outgoing from two point scatterers
purpose of this section:

separated by the lattice vectqr (defined as above) shows that the
To the set ofa, there corresponds in the vector calculus a set gondition for their maximum constructive interference is given by
‘reciprocal vectors’h;, which are defined (by Gibbs) by the following

properties: (S—%)-rL=n, (1.1.25)
g -by=0 (fori#k) (11.21) wheres ands are the wavevectors of the incident and scattered
beams, respectively, antis an arbitrary integer.
and Sincer, = ua+ vb 4+ wc, whereu, v and w are unrestricted
a-b =1, (11.22) integers, equation (1.1.2.5) is equivalent to the equations of Laue:
wherei andk may each equal 1, 2 or 3. The first equation, (1.1.2.1), says h-a=h, h-b=k, h-c=I, (1.1.2.6)

that each vectoby is perpendicular to two vectoes, as follows from ) ) ) )

the vanishing scalar products. Equation (1.1.2.2) provides the normv#iereh = s — sy is the diffraction vector, ant, kandl are integers

the vectorb;: the length of this vector must be chosen such that tHeorresponding to orders of diffraction from the three-dimensional
projection ofb; on the direction of; has the length fa;, wherea; is the  lattice (Lipson & Cochran, 1966). The diffraction vector thus has to
magnitude of the vecta. . .. satisfy a condition that is analogous to that imposed on the normal

. to a lattice plane.
The consequences of equations (1.1.2.1) and (1.1.2.2) Welpe nexi relevant aspect to be commented on is the Fourier

elaborated by Ewald (1921) and are very well documented in {@,4nsion of a function having the periodicity of the crystal lattice.
subsequent literature, crystallographic as well as other. Such functions are.g.the electron density, the density of nuclear
As is well known, the reciprocal lattice occupies a rathhater and the electrostatic potential in the crystal, which are the
prominent position in crystallography and there are nearly g3qrative definitions of crystal structure in X-ray, neutron and
many accounts of its importance as there are crystallographic texfacron.giffraction methods of crystal structure determination. A
It is not intended to review its applications, in any detail, in thgqrier expansion of such a periodic function may be thought of as a
present section; this is done in the remaining chapters and sectigp erposition of wavese(g. Buerger, 1959), with wavevectors
of the present volume. |t seems desirable, however, to mention Byaed to the interplanar spacingt, in the crystal lattice.
way of an introduction some fundamental geometrical, physical a noting the wavevector of a Fourier wavedfa function ofhki),
mathematical aspects of crystallography, and try to give a unifi phase of the Fourier wave at the paiit the crystal is given by

demonstration of the usefulness of mutually reciprocal bases 38’ r, and the triple Fourier series corresponding to the expansion

interpretive tool. of the periodic function, sag(r), can be written as
Consider the equation of a lattice plane in the direct lattice. It Is P » Sag(1),

shown in standard textbooks.§.Buerger, 1941) that this equation G(r) = > .C(9g) exp(—2rig - r), (11.2.7)
is given by g

hx+ky+lz=n, (L123) whereC(g) are the amplitudes of the Fourier waves, or Fourier
2



1.2. The structure factor

By P. GoPPENS

1.2.1. Introduction 1.2.3. Scattering by a crystal: definition of a structure

The structure factoris the central concept in structure analysis by factor

diffraction methods. Its modulus is called thiucture amplitude In a crystal of infinite sizep(r) is a three-dimensional periodic
The structure amplitude is a function of the indices of the set fifnction, as expressed by the convolution
scattering plane$, k and |, and is defined as the amplitude of
scattering by the contents of the crystallographic unit cell, _ _
expressed in units of scattering. For X-ray scattering, that unit iGerystall) = 2200 punitcen(r) * 6(r —na—mb —pc), (1.231)
the scattering by a single electrd.82 x 101 m), while for
neutron scattering by atomic nuclei, the unit of scattering length OL d int dis the Dirac delta functi
10~ m is commoniy used. The complex form of the structurd €€N, Mandp are integers, andis the Lirac aelta function.
factor means that the phase of the scattered wave is not simpl))-hus' according to the Fourier convolution theorem,
related to that of the incident wave. However, the observable, which .
is the scattered intensity, must be real. It is proportional to thé\(S) = F{p(r)} A
square of the scattering amplitude (seey, Lipson & Cochran, =335 F{punitcen(r) }F{6(r —na—mb —pc}, (1.2.3.2)
1966). m p

The structure factor is directly related to the distribution of
scattering matter in the unit cell which, in the X-ray case, is thghich gives
electron distribution, time-averaged over the vibrational modes of
the solid. _E A * * x

In this chapter we will discuss structure-factor expressions forA<S) F{puni ceu(r)}Zh:Zk:ZI:&(S ha' —kb" —lc"). (1.233)
X-ray and neutron scattering, and, in particular, the modelling that
is required to obtain an analytical description in terms of the Expression (1.2.3.3) is valid for a crystal with a very large
features of the electron distribution and the vibrational displaceumber of unit cells, in which particle-size broadening is negligible.
ment parameters of individual atoms. We concentrate on the mBstthermore, it does not account for multiple scattering of the beam
basic developments; for further details the reader is referred to thighin the crystal. Because of the appearance of the delta function,
cited literature. (1.2.3.3) implies thab = H with H = ha* + kb* + Ic*.

The first factor in (1.2.3.3), the scattering amplitude of one unit
cell, is defined as the structure facter

nmp

1.2.2. General scattering expression for X-rays F(H) = F{punitcen(r)} = [t cer?(r) €XP(27iH - 1) dr. (1.2.3.4)

The total scattering of X-rays contains both elastic and inelastic
components. Within the first-order Born approximation (Born,
1926) it has been treated by several autherg.{Valler & Hartree,
1929; Feil, 1977) and is given by the expression

|total(S) = |classicaEU¢; eXp(Zﬂ'iS' rj)@/)o dl’ ’2
n

1.2.4. The isolated-atom approximation in X-ray
diffraction

. (1221) To a reasonable approximation, the unit-cell density can be
described as a superposition of isolated, spherical atoms located

wherelqassicaliS the classical Thomson scattering of an X-ray beafd -

by a free electron, which is equal te?/mc)?(1 + cog 26)/2 for

an unpolarized beam of unit intensity, is the n-electron space- Punit cell(l) = D _patom (1) * 6(r —rj). (1.24.1)
wavefunction expressed in then Zoordinates of the electrons J

located atr; and the integration is over the coordinates of all

electronsS is the scattering vector of length 2 #if\. Substitution in (1.2.3.4) gives
The coherent elastic component of the scattering, in units of the . .
scattering of a free electron, is given by F(H) =Y F{pawomj}F{6(r —r;)} =>_ fjexp(2riH - rj)
. j i
|c0herente|astic(s) = |f¢6 2]: eXp(Zﬂls' rJ')WJO dr|2~ (1'2-2-2) (1.2.4.23')
If integration is performed over all coordinates but those of thtser
jth electron, one obtains after summation over all electrons
i
where p(r) is the electron distribution. The scattering amplitude — S f{cos 2t(hx -+ kv - |z
A(S) is then given by 2,: it (g kg +12)
A(S) = [p(r) exp(2xiS-r) dr (12.2.4a) +isin2r(hx +ky +1z)}. (1.2.4.2b)
or fi(S), the spherical atomic scattering factor, or form factor, is the
A(S) = F{p(r)}, (1.2.2.4b) Fourier transform of the spherically averaged atomic dengity,
R in which the polar coordinate is relative to the nuclear position.
whereF is the Fourier transform operator. fi(S) can be written as (James, 1982)

10



Table 1.2.7.4Closed-form expressions for Fourier transform of Slater-type functions (Avery & Watson, 1977; Su & Coppens,

1.2. THE STRUCTURE FACTOR

1990)
(i) = [y rN exp(=2Zn)jk(Kr) dr,K = 4z sing/\.
N
k 1 2 3 4 5 6 7 8
0 1 2z 2(32% —K?) | 24z(z2 —K?) | 24(5Z% — 10K?Z? + K*) | 24@(K? —3Z?)(3K? —Z?) | 720(7Z° — 35K2Z* + 21K*Z? — K®) | 4032077 — 7K2Z5 4 7K*Z® — K°Z)
K2+272 | (K2422)? | (K24 22)7° (K2 +22)* (K2 +22)° (K2 +22)° (K2 +22)’ (K2 +22)°
! 2K 8KZ 8K(522 — K2) | 48KZ(5Z% - 3K?) 48K (3524 — 42K272 4 3K*) | 1920KZ(7Z* — 14K2Z2 + 3K*) 576(K (2128 — 63K2Z* 4 27K*Z% — K®)
(K2+22)% | (K2+22)° (K2 +22)* (K2 +22)° (K2 +22)° (K2 +22)" (K2 +22)°
2 8K? 48K2Z 48K?(72% — K?) 384K2Z(722 — 3K?) 115K?(217% — 18222 + K*) 1152(K?Z(212* — 30K2Z? + 5K*)
(K2+22)°® | (K2+22)* (K2 +22)° (K2 +22)° (K2 +22)7 (K2 +22)°
3 48K3 384K°Z 384K3(922 — K?) 1152K3Z(32% - K?) 11520K3(33Z% — 22K?Z2 + K*)
(K2 +22)°* (K2 +22)° (K2 +22)° (K2 +22)7 (K2 +22)°
4 3844 384K*z 384(K*(112% — K?) 4608(K*Z(112% — 3K?)
(K2 +22)° (K2 +22)° (K2 +22)7 (K2 +22)®
s 3845 4608(K5Z 4068(K3(1372 — K?)
(K2 +22)° (K2 +22)7 (K2 +22)°
6 4608(K° 645120K°Z
(K2 +22)7 (K2 +22)°
! 645127
(K2 +22)8
|0.—1|1/2 Lo or=(Axr)=Dr (1.2.111)
P(u) = exp{—35 o (ulu)}. (1.2.10.2a)
k .
(2r)¥/? 2 with
Here o is the variance—covariance matrix, with covariant 0 A X
components, ando!| is the determinant of the inverse of D=| X 0 -\, (1.2.112)
Summation over repeated indices has been assumed. The X A 0

corresponding equation in matrix notation is

o

= WGXP{— % (U)T"'fl(u)}’

where the superscrift indicates the transpose.
The characteristic function, or Fourier transformRgt) is

or in tensor notation, assuming summation over repeated indices,
ori = Dij = —€ijk)\krj (1.2.11.3)

where the permutation operatefc equals +1 fori, j, k a cyclic
permutation of the indices 1, 2, 3, orl for a non-cyclic
permutation, and zero if two or more indices are equal.iFerl,
for example, only thes;,3 and €13, terms occur. Addition of a

P(u) (1.2.10.2b)

ik
T(H) = exp{—2n"0 *nyhy} (121033)  {ranslational displacement gives

or ori = Djrj + 1. (1.2.11.4)
T(H) = exp{—2m°H oH}. (1.2.10.30) When a rigid body undergoes vibrations the displacements vary

with time, so suitable averages must be taken to derive the mean-
square displacements. If the librational and translational motions

are independent, the cross products between the two terms in
(1.2.11.4) average to zero and the elements of the mean-square
displacement tensor of atom Uy, are given by

Uy = +Loor3 + Laats — 2Loarars + Tig

With the change of variablb* = 2725 (1.2.10.3) becomes
T(H) = exp{—bjkhjhk}.

1.2.11. Rigid-body analysis

2 2

The treatment of rigid-body motion of molecules or molecular U2z = +Laart + Luars — 2Lasrars + Tz
fragments was developed by Cruickshank (1956) and expanded intQyn, — | - ¢2 1 | r2 — 2L.orirs - T
a general theory by Schomaker & Trueblood (1968). The theory has ff Fhufz  Laah ) affa + T3
been described by Johnson (18yand by Dunitz (1979). The latter U1z = —Lasriry — Ligrs + Liarors + Losrars + Taz
reference forms the basis for the following treatment. UM — L L Loar2 4 L T

The most general motions of a rigid body consist of rotations “13 = ~t22M113 + Li2lals = Lialz + Lagfalz + i
about three axes, coupled with translations parallel to each of theyl, — | | rorg + Lyorirs — Lyafirs — Logrs + Tog,
axes. Such motions correspond to screw rotations. A libration
around a vecton (A1, Az, As), with length corresponding to the where the coefficientl; = (\i);) andTj = (tit;) are the elements
magnitude of the rotation, results in a displacem@ntsuch that  of the 3x 3 libration tensoiL and the 3x 3 translation tensoT,

19
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1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

1.3.2.7.4.Matrix representation of the discrete Fourier A} /Aj, then for all multi-indice = (p1,p2, -, Pn)
vanstom OFT) (DPw)(4) = F(N)[(+27i4 P4
By virtue of definitions (i) and (ii), (DPW)(£) = 7 (N)[(=2ri)P ] (£)

_ 1 e

F(N)vg :d—NZeXP[—ZW"{’ (NT)uy or equivalently

|detN| _ .

F(N)[DP)(4°) = (+2mik*)PW(£)
F (N)[DPW](£) = (—2ik)P(£).

so that#(N) and.7 (N) may be represented, in the canonical bases (4) Convolution property Let ¢ € Wy and ® € Wy (respec-

F(N)Jug = exp+2ris” - (N
=

of Wy andW;;, by the following matrices: tively ¢ and¥) be related by the DFT, and define
~ 1 N (exgp)(h)= > @)t 1)
[Z(N)] = mexp{—bﬂé (N 1»{»)] A" INT"

[F(N)], = expl+2mis" - (N7£)]. (®xW)(#) = P ZZ/NTZ U R —4£).
=yl n
WhenN is symmetric.Z"/NZ" andZ" /NTZ" may be identified
in a natural manner, and the above matrices are symmetric. Then
When N is diagonal, sayN = diag(v1,vs, ...,v), then the

F(N)[® + W)(4) = |detN|o(£) i (#
tensor product structure of the full multidimensional Fourier _( )@+ K*) | i i *)"b( )
transform (Section 1.3.2.4.2.4) F(N)[g = o|(#7) = (4 )W (£)
Tx=T Ty &...Q0 Jx, and

gives rise to a tensor product structure for the DFT matrices. The 7 ey 1 i
tensor product of matrices is defined as follows: F(N)[e x i(#7) GetN| (@ + W) (4)

anB ... aB »f(N)[(I) X 11’](1{) = (50 * (p)(;{)

A®B=1| N E Since addition orZ"/NZ" andZ"/N"Z" is modular, this type of
amuB ... anB convolution is callectyclic convolution.

) ) (5) Parseval/Plancherel propertyf ¢, i, ®, W are as above,
Let the index vectorg and4* be ordered in the same way as theéhen

elements in a Fortran arrag,g.for 4 with 4, increasing fastest;, 1

next fastest, . ., 4, slowest; then (7 (N)[®@], 7 (N)[¥]),, = detN| (®, W),
_ _ _ . e
FN)=T(1n) Q@ F(12) ®...Q F(vn), ) ) 1
where ('JZ(N)[‘OL '%(N)[l/’})w = |detN| (¢, 'ﬁ)W
Fw)], . = Eex o 4k (6) Period4. WhenN is symmetric, so that the ranges of indides
TG4, P y )’ and/#* can be identified, it makes sense to speak of powess(dX)
and 7 (N). Then the ‘standardized’ matrice{i/|detN|1/2).“/7(N)
and and(1/|detN|"/%).7 (N) areunitary matrices whose fourth power is
FIN) = F(n) ® T (12) ® ... ® F(vn), the identity matrix (Section 1.3.2.4.3.4); their eigenvalues are

therefore+1 andi.

where ) ) ) )
1.3.3. Numerical computation of the discrete Fourier

_ yols
[JVJ.] ik = exp<+27ri 17‘> transform
) 1.3.3.1. Introduction

_ _ _ The Fourier transformation’s most remarkable property is
1.3.2.7.5.Properties of the discrete Fourier transform  undoubtedly that of turning convolution into multiplication. As

The DFT inherits most of the properties of the FourigfliStribution theory has shown, other valuable properties — such as

transforms, but with certain numerical factors (‘Jacobians’) due @?e shift property, the conversion of differentiation into multi-

the transition from continuous to discrete measure. plication by monomials, and the duality between periodicity and
(1) Linearity is obvious. sampling — are special instances of the convolution theorem.
(2) Shift property If (7,1)(4) = (£ — «) and (7, ¥)(£*) = This property is exploited in many areas of applled mathemat|c§

U(4 — «*), where subtraction takes place by modular’ vectd?d engineering (Campbell & Foster, 1948; Sneddon, 1951,

arithmetic in Z"/NZ" and Z"/NTZ", respectively, then the hampeney, 1973; Bracewell, 1986). For example, the passing of
following identities hold: a signal through a linear filter, which results in its being convolved

N _ with the response of the filter to &function ‘impulse’, may be
F (N) 7] (#) = exp[+2risd* - (N7 (N)[](47) modelled as a multiplication of the signal's transform by the
P N e -1 , transform of the impulse response (also called transfer function).
F(N)lr V](£) = exp—2rid” - (NTA]F (N)[](4). Similarly, the solution of systems of partial differential equations
(3) Differentiation identitiesLet vectorsy and¥ be constructed may be turned by Fourier transformation into a division problem for
from % € £(R") as in Section 1.3.2.7.3, hence be related by thiistributions. In both cases, the formulations obtained after Fourier
DFT. If DP¢ designates the vector of sample value®p§P at the  transformation are considerably simpler than the initial ones, and
points ofAg /Aa, andDPW the vector of values dbgcbo at points of lend themselves to constructive solution techniques.
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1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

B is a diagonal matrix of multiplications, keZ"/NZ", k*eZ"/NZ"

C is a matrix with entries 0f1, +i, defining the ‘post-additions’.
The elements on the diagonal®itan be shown to be either real or
pure imaginary, by the same argument as in Section 1.3.3.2.3.1
MatricesA and C may be rectangular rather than square, so that
intermediate results may require extra storage space.

1.3.3.3.2.1.Multidimensional Cooley—Tukey factorization
Let us now assume that this decimation can be factoreddnto
successive decimationise. that

1.3.3.3. Multidimensional algorithms N = NiNz...Ng-1Ng

From an algorithmic point of view, the distinction between oneand hence
dimensional (1D) and multidimensional DFTs is somewhat blurred NT — NTNT NTNT
by the fact that some factoring techniques turn a 1D transform into a T NdTd-1e TR0

multidimensional one. The distinction made here, however, ismen the coset decomposition formulae Corresponding to these

practical one and is based on the dimensionality of the indexing sg{&cessive decimations (Section 1.3.2.7.1) can be combined as
for data and results. This section will therefore be concerned Wihiows:

the problem of factoring the DFT when tliedexing setdor the
input data and output results are multidimensional. 7" = U (kg + Ny Z")

k1
U (kz + szn)‘| }

1.3.3.3.1.The method of successive one-dimensional _ U {kl N
k1 k2

transforms

The DFT was defined in Section 1.3.2.7.4 inradimensional —
setting and it was shown that when the decimation malttixs

diagonal, sayN = diagN® ,N®@, ... ,N™), then F(N) has a = UU (k1 4+ Niko + ...+ NiNg x ... x Ng_1kq + NZ")
tensor product structure: ki ke
FIN)=FINY) @ FIN®) @ ... @ F(NM), with k; € Z"/N;Z". Therefore, anyk € Z/NZ" may be written

uniquely as

This may be rewritten as follows:
K =ky+Niko+...+NiNo x ... x Ng_1Kg.

FIN=[FINY) @Iy @ ... @ lyn]

I @ If(N@) o @l Similarly:
X IN® A N .
X ... Zn:U(kd‘*‘Nan)
_ K3
X [|N(1)®|N(2)®...®F(N(n>], -
where thel’s are identity matrices ane denotes ordinary matrix - K* 4 NTK* NT % x NIk
multiplication. The matrix within each bracket represents a one- kaJ( A R R A
dimensional DFT along one of tha dimensions, the other ¢ T !
dimensions being left untransformed. As these matrices commute, +N'Z")
the order in which the successive 1D DFTs are performed is - . .
immaterial. so that anyk* € Z"/N"Z" may be written uniquely as
This is the most straightforward method for building an K* =k + NIk + ...+ NJ x ... x NJk?

dimensional algorithm from existing 1D algorithms. It is known in
crystallography under the name of ‘Beevers—-Lipson factorizatiowith k* € Z"/NTZ". These decompositions are the vector
(Section 1.3.4.3.1), and in signal processing as the ‘row—coluranalogues of the multi-radix number representation systems used

method'. in the Cooley—Tukey factorization.
We may then write the definition d¥(N) with d = 2 factors as
1.3.3.3.2.Multidimensional factorization X* (k3 +NzK;) = > ; X (k1 + Nika)
1 K2

Substantial reductions in the arithmetic cost, as well as gains in T T CAny—1
flexibility, can be obtained if the factoring of the DFT is carrigd out x el(ky’ +ki N2)NZ "N (ks + Nikz)].
in several dimensions simultaneously. The presentation given h _
is a generalization of that of Mersereau & Speake (1981), using tﬁfe argument o&(-) may be expanded as
abstract setting established independently by Auslander, Tolimieri k- (N"*ky) + K} - (N7 k1) + K5 - (N;1ko) + K; - ka.

& Winograd (1982). ) . )

Let us return to the generatdimensional setting of Section The first summand may be recognized as a twiddle factor, the
1.3.2.7.4, where the DFT was defined for an arbitrary decimatiéﬁ]cond and third as the kemelstofN,) andF(N,), respectively,

trix N by the f | h t tND: while the fourth is an integer which may be dropped. We are thus
matrix N by the formulae (whergN| denotesdetN|) led to a ‘vector-radix’ version of the Cooley—Tukey algorithm, in

. 1 (% « (N1 which the successive decimations may be introduced innall
FIN): - X(k) |N|;X ()K" (N")] dimensions simultaneously by general integer matrices. The
computation may be decomposed into five stages analogous to
FIN):  X*(k*) = Z X (K)ek* - (N"k)] those of the one-dimensional algorithm of Section 1.3.3.2.1:
" (i) form the|N;| vectorsYy, of shapeN, by

with Ykl(kz) = X(kl + lez), k1 S Zn/len, k2 S Zn/szn;
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1.4. SYMMETRY IN RECIPROCAL SPACE
Table Al.4.3.3Monoclinic space groups

Each expression fok or B in the monoclinic system and for the space-group settings chod@nAris represented in terms of one of the following symbols:

c(hl)c(ky) = cog2n(hx+ Iz)] cog2nky),  c(hk)c(lz) = cog2n(hx+ ky)] coq2xlz),
c(hl)s(ky) = cog2r(hx+ Iz)] sin(27ky),  c(hk)s(Iz) = cog2r(hx -+ ky)] sin(27lz),
s(hl)c(ky) = sin2r(hx+ 1z)] cog2rky),  s(hk)c(Iz) = sin2x(hx + ky)] coq(2xlz),

s(hl)s(ky) = sin[2r(hx + 1z)] sin(2rky),  s(hk)s(Iz) = sin[2r(hx + ky)] sin(2~lz), (A1.4.3.1)
where the left-hand column of expressions corresponds to space-group representations in the second sdittagewiis the unique axis, and the right-hand
column corresponds to representations in the first setting, aititlken as the unique axis.

The lattice types in this table aRe A, B, C andl, and are all explicit in the full space-group symbol only (see below). Note thBf sik), sky) and slz) are
zero forh=1=0,h=k=0,k=0 andl = 0, respectively.

Group symbol .
Unique
No. | Short Full Parity A B axis

3 | P2 P121 2chl)c(ky) | 2chl)sky) | b

3 | P2 P112 2chk)c(lz) | 2c(hk)s(z) | c

4 | P2 P12,1 k=2n 2chl)c(ky) | 2chl)sky) | b
k=2n+1 —2shl)sky) | 2stl)c(ky)

4 | P2 P112, I =2n 2c(hk)c(lz) | 2chk)s(z) | c
l=2n+1 —2s0k)s(z) | 2shKk)c(z)

5 | C2 Ci21 4chl)c(ky) | 4cl)sky) | b

5 | C2 Al121 4chl)c(ky) | 4chl)sky) | b

5 | C2 1121 4Achl)c(ky) | 4cthl)sky) | b

5 | C2 Al12 4chk)c(lz) | 4chk)s(z) | c

5 [ C2 B112 4cpk)c(l2) | 4chKk)s(z) | c

5 [ C2 1112 4cpKk)c(lz) | 4chKk)s(z) | c

6 | Pm Plml 2ctl)c(ky) | 2stl)cky) | b

6 | Pm PL1Im 2c(hk)c(lz) | 2shk)c(lz) | c

7 | Pc Picl | =2n 2chl)c(ky) | 2shl)cky) | b
l=2n+1 =2shl)sky) | 2chl)sky)

7 | Pc Plnl h+1=2n 2c(hl)c(ky) | 2stl)ckky) | b
h+l=2n+1 —2shl)sky) | 2chl)sky)

7 | Pc Plal h=2n 2chl)c(ky) | 2shl)cky) | b
h=2n+1 —2shl)sky) | 2chl)sky)

7 | Pc Plla h=2n 2c(hk)c(lz) | 2shk)c(lz) | c
h=2n+1 —2s0K)s(z) | 2chk)s(z)

7 | Pc Plln h+k=2n 2c(hKk)c(lz) | 2sthKk)c(z) | c
h+k=2n+1 —2shk)s(z) | 2chk)s(z)

7 | Pc Pl1b k=2n 2c(hk)c(lz) | 2shk)c(lz) | c
k=2n+1 —2s0Kk)s(z) | 2chk)s(z)

8 | Cm Clmi 4chl)c(ky) | 4shl)cky) | b

8 | Cm Alml 4chl)c(ky) | 4shil)cky) | b

8 | Cm 11m1 4Achl)c(ky) | 4sthl)ckky) | b

8 | Cm Allm 4chk)c(lz) | 4sthk)c(z) | c

8 | Cm Blim 4chk)c(lz) | 4sthk)c(z) | c

8 | Cm 111m 4c(hk)c(lz) | 4sthk)c(z) | c

9 | Cc Clcl I =2n 4c(l)c(ky) | 4shl)ckky) | b
l=2n+1 —4shl)sky) | 4chl)sky)

9 | Cc Alnl h+1=2n 4Ac(hl)c(ky) | 4shl)cky) | b
h+l=2n+1 —4shl)sky) | 4chl)sky)

9 | Cc 11al h=2n 4c(hl)c(ky) | 4shl)cky) | b
h=2n+1 —4stl)sky) | 4chl)sky)

9 | Cc Alla h=2n 4chk)c(lz) | 4shk)c(lz) | ¢
h=2n+1 —4shk)s(z) | 4chk)s(z)

9 | Cc Blln h+k=2n 4chk)c(lz) | 4shk)c(z) | c
h+k=2n+1 —4snk)s(z) | 4chk)s(z)

9 | Cc 111b k=2n 4chk)c(l2) | 4shk)c(lz) | ¢
k=2n+1 —4shk)s(z) | 4chk)s(z)

10 | P2/m P12/ml 4chl)c(ky) O|b
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1.4. SYMMETRY IN RECIPROCAL SPACE
Table Al1.4.4.1Crystallographic space groups in reciprocal spgoent)

14,md No. 109 (162)
(1) hKI: (2)AKI: —111/2
(5)hKI: (6)Rkl: —111/2

l4,cd No. 110 (163)
(1) hkl: (2)Pkl: —111/2

(5)hkl: —001/2  (6)nkl: —110/2

(3)KRl: —021/4
(7)KRI: —203/4

(3)hI: —021/4
(7Xnl: —201/4

(4)hl: —203/4
(8)khl: —021/4

(4)khl: —203/4
(8)khl: —023/4

Point group: 4/mmm Tetragonal

Laue group: 4/mmm

Point group: 42m Tetragonal

Laue group: 4immm

P42m No. 111 (164)
(1) hKl: (2)FK:
(5)hK: (6) hKI:

P42 No. 112 (165)
(1) hKI: (2)PKI:
(5)RKI: —001/2  (6)hKI: —001/2

P42;m No. 113 (166)
(1) hKI: (2)FK:
(5)AK: —110/2  (6)hKI: —110/2

PZ—Z]_C
(1) hKl:
(5)RKI: —111/2

No. 114 (167)
(2)TkI:
(6)KT: —111/2

P4m2
(1) hkl:
(5)hkl:

No. 115 (168)
(2)FkI:
(6)hkl:

Pac2
(1) hkl:
(5)hkl: —001/2

No. 116 (169)
(2) kI
(6)AkI: —001/2

Pab2
(1) hkl:
(5)hkl: —110/2

No. 117 (170)
(2)KI:
(6)nkl: —110/2

P4n2
(1) hil:
(5)hKI: —111/2

No. 118 (171)
(2)PKI:

(6)AKI: —111/2

1 4m2
(1) hkl:
(5)hkl:

No. 119 (172)
(2)FkI:
(6)hkI:

14c2
(1) hkl:
(5)hkl: —001/2

No. 120 (173)
(2)kl:
(6)Akl: —001/2

142m
(1) hkl:
(5)hK:

No. 121 (174)
(2)KI:
(6)KI:

142d
(1) hkl:
(5)hK: —203/4

No. 122 (175)
(2)PKI:
(6)nKT: —203/4

(3)kHi:
(7)Kh:

(3)kHi:
(7)KAl: —001/2

3)kH:
(7)KAl: —110/2

(3)kH:
(7)KRI: —111/2

(3)kHi:
(7)KH:

(3)kHi:
(7H: —001/2

3)kH:
(7KH: —110/2

(3)kH:
(7KH: —111/2

(3)kHi:
(7)KH:

(3)kHi:
(7H: —001/2

3)kH:
(7)Khl:

(3)kH:
(7)hI: —021/4

(4)KHT:
(8)khl:

(4)KHI:
(8)hl: —001/2

(4)KAI:
(8)hl: —110/2

(4)KAT:
(8)hl: —111/2

(4)KRT:
(8)KHI:

(4)KHT:
(8)KAI: —001/2

(4)KHT:
(8)KAI: —110/2

(4)KA:
(8khI: —111/2

(4) KR
(8)KHI:

(4)KHT:
(8)KAI: —001/2

(4)KAT:
(8)khl:

(4)Khl:
(8)hl: —021/4

P4/mmm No. 123 (176)

(1) hkl: (2)hkl: (3)khl:

(5)hkKi: (6) hKI: (7)khl:
P4/mcc No. 124 (177)

(1) hkl: (2)hkl: (3)khl:

(5)hKI: —001/2  (B6)hkl: —001/2  (7)khl: —001/2
P4/nbm Origin 1 No. 125 (178)

(2) hkl: (2)hkl: (3)khl:

(5)hK: (6) hK: (7)kHI:

(9)PKI: —110/2 (10hK: —110/2 (11KH:—110/2
(13)hkl: —110/2 (14)kl: —110/2 (15khl: —110/2

P4/nbm Origin 2 No. 125 (179)

(1) hk: (2)hkl: —110/2  (3)khl: —100/2

(5)hKI: —100/2  (6)hKI: —010/2  (7)kHI:
P4/nnc Origin 1 No. 126 (180)

(1) hk: (2) hkI: (3)khl:

(5)hK: (6) hKI: (7)KHi:

(9)PKI: —111/2 (100K: —111/2 (11KH:—111/2
(13)hkl: —111/2 (14K —111/2 (15KAl: —111/2

P4/nnc Origin 2 No. 126 (181)

(1) hkl: (2)hkl: —110/2  (3)hl: —100/2

(5)hK: —101/2  (6)nkl: —011/2  (7)khi: —001/2
P4/mbm No. 127 (182)

(1) hkl: (2)hkl: (3)khl:

(5)hK: —110/2  (6)hkl: —110/2  (7)kh:—110/2
P4/mnc No. 128 (183)

(1) hkl: (2)hkl: (3)khl:

(5)hK: —111/2  (6)hKI: —111/2  (7)kh:—-111/2

P4/nmm Origin 1 No. 129 (184)
(1) hKE: (2)hkl:
(5)hK: —110/2  (B)hKI: —110/2
(9)hkl: —110/2 (10hK: —110/2
(13)hkl: (14)hKI:

(3)khl: —110/2
(TKH:
(L1KH:
(15)Khl: —110/2

P4/nmm Origin 2 No. 129 (185)
(1) hkl: (2)hkl: —110/2
(5)hK: —010/2  (6)hKI: —100/2

(3)KAl: —100/2
(7KH: —110/2

P4/ncc Origin1 No. 130 (186)

(1) hKI: (2) hKI: (3)Khl: —110/2
(5)hK: —111/2  (6)kI: —111/2  (7)kh: —001/2
(9)PKI: —110/2 (10K —110/2 (11K

(13)hkl: —001/2  (14hkl: —001/2 (15Khl: —111/2
P4/ncc Origin 2 No. 130 (187)
(1) hKi: (2)hkl: —110/2

(5)hKi: —011/2  (6)KI: —101/2

(3Khl: —100/2
(TKH: —111/2

(4)khi:
(8)khI:

(@)kh:
(8)KAI: —001/2

(4)khl:
(8)kHI:
(L2KAT: —110/2
(16)%hl: —110/2

(4Kkhl: —010/2
(8)KhI: —110/2

(4)khi:
(8)khI:
(12KhT: —111/2
(16khl: —111/2

(4Kkhl: —010/2
(8)KAI: —111/2

(4)Kh:
(8)KAI: —110/2

(@)Khl:
(8)KAI: —111/2

(4)khl: —110/2
(8)KAI:
(12)KAl:
(16khl: —110/2

(4)hl: —010/2

4)hl:
(8)khI:

(4)khl: —110/2
(8)knl: —001/2
(12)kh:
(16)%hl: —111/2

(4)hl: —010/2

(8)KAT: —001/2
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1.5. CLASSIFICATION OF SPACE-GROUP REPRESENTATIONS

kx

(b) (d)

Fig. 1.5.5.3.4), (b). Symmorphic space groug/mmm(isomorphic to the reciprocal-space graiipof 4/mmm). Diagrams foa > c,i.e.¢ > a“.In
the figuresa = 1.25¢, i.e. ¢ = 1.253". (a) Representation domain (thick lines) and asymmetric unit (thick dashed lines, partly protruding) imbedded in
the Brillouin zone, which is a tetragonal elongated rhombdodecahedipRepresentation domaiiMXz;PZ, and asymmetric unifMXTT;P of
14/mmmIT A, p. 468. The part MXTNZP is common to both bodies; the paiNPZ is equivalent to the paNIZlPTl by a twofold rotation around

theaX|sQ NP. CoordmatesofthpomtsF 0,0,0Xx=0,3,00M =3,3,0,P=0,3,4N=2,%,2T7=0,03~T1=3,3, 52 =0, Ozo~

Z1 = zl with zp = [1+ c/a) 1/4; 2 =35 — 2; the sign~ means symmetrically equivalentines A = FZO 0, 0 z, V M = 2 2,z;
W= XP 0,3,z X=TM =x,x0; A= FX 05,0, Y =XM =x,1,0; Q=PN =x, 3—x 1. The lineszyZ;, ;P and PZ, have no special
symmetry but belong to special plané8anes C =T'MX = x,y,0; B=T2ZZ1M = x,X,Z A I'XPZ, = 0,y,z, E = MXPZ =X, 2,z The plane
ZoZ1P belongs to the general positi@P. Large black circles: special points belonging to the representation domain; small open Tirsldsg:and

Zy ~ Z3 belonging to special lines; thick lines: edges of the representation domain and spe€eHiNg; dashed lines: edges of the asymmetric unit.
For the parameter ranges see Table 1.5.5.3.

(¢), (d). Symmorphic space grougt/mmm(isomorphic to the reciprocal-space grogpof 4/mmm). Diagrams forc > a, i.e. & > c*. In the
figuresc = 1.254, i.e. & = 1.25¢*. (c) Representation domain (thick lines) and asymmetric unit (dashed lines, partly protruding) imbedded in the
Brillouin zone, which is a tetragonal cuboctahedratf).Representation domainS;RXPMSGand asymmetric uniEM,XTT,P of 14/mmm IT A, p.
468. The parl’S;RXTNPis common to both bodies; the patNPMSGis equivalent to the paif;NPM,S|R by a twofold rotation around the axis

Q NPCoordmatesofth@omtsF OOOX 010N 111M 0,0,i~M,=1,1,0,T= 001~T1_ 11p_o11lgs_

12 40 4 2020 4 12 4
1§ =g,5,0withs=[1-(a/c)}/4;ss=L-sR=r,1 0 G=0,9, 2W|th r= (a/c)22/2 g $—r; the S|gn~ means symmetrically
equwalent L|nes A=TM=0,0z W= XP 0,1 3.7 E I'S =x,x,0;, F=MS=x,X, 2, A I'X=0,y,0; Y=XR=x, %,O

U=MG=0, y, ; Q=PN =, 1 =% 1 The IlnesGS~ SlR SN~ NS andGP ~ PR have no speC|aI symmetry but belong to special planes.
PlanesC = FSlRX =xY,0;D= MSG XY 5 LB=TSSM=xxzA=IXPGM=0,y,z E = RXP=x, 2,1 The plané&s,RPGShelongs to the
general positioGP. Large black circles: speual points belonging to the representation domain; small open klgcledd ; the pointsT ~ T, S~ §
andG ~ R belong to special lines; thick lines: edges of the representation domain and spedc@Hing; dashed lines: edges of the asymmetric unit.
For the parameter ranges see Table 1.5.5.3.
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2.1. STATISTICAL PROPERTIES OF THE WEIGHTED RECIPROCAL LATTICE

notorious for its rather indeterminate mean and ‘infinite’ variance, - -
resulting from the ‘tail’ of the denominator distributions extending
through zero to negative values. The leading terms of the ratio /
distribution are given by Kendall & Stuart (1977, p. 288).

(W] »
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2.1.7. Non-ideal distributions: the correction-factor 1
approach
2.1.7.1. Introduction 100
The probability density functions (p.d.f.’s) of the magnitude of
the structure factor, presented in Section 2.1.5, are based on the
central-limit theorem discussed above. In particular, the centric and
acentric p.d.f.’s given by equations (2.1.5.11) and (2.1.5.8),
respectively, are expected to account for the statistical properties
of diffraction patterns obtained from crystals consisting of nearly |E|
equal atoms, which obey the fundamental assumptions of
uniformity and independence of the atomic contributions and are 300 =
not affected by noncrystallographic symmetry and dispersion. It is
also assumed there that the number of atoms in the asymmetric unit (b)
is large. Distributions of structure-factor magnitudes which are
based on the central-limit theorem, and thus obey the above
assumptions, have been termed ‘ideal’, and the subjects of the
following sections are those distributions for which some of the
above assumptions/restrictions are not fulfilled; the latter distribu-
tions will be called ‘non-ideal'.
We recall that the assumption of uniformity consists of the
requirement that the fractional part of the scalar prodixct ky +
Iz be uniformly distributed over the [0, 1] interval, which holds well
if X,y,zare rationally independent (Hauptman & Karle, 1953), and
permits one to regard the atomic contribution to the structure factor
as a random variable. This is of course a necessary requirement for
any statistical treatment. If, however, the atomic composition of the |E|
asymmetric unit is widely heterogeneous, the structure factor is then
a sum of unequally distributed random variables and the Lindebengyg. 2.1.7.1. Atomic heterogeneity and intensity statistics. The histogram
Lévy version of the central-limit theoremcfi Section 2.1.4.4) appearing in4) and b) was constructed fronE| values which were
cannot be expected to apply. Other versions of this theorem mightecalculated from atomic parameters published for the centrosymmetric
still predict a normal p.d.f. of the sum, but at the expense of astructure of GH;sCI,N,O,Pt (Faggianet al, 1980). The space group of
correspondingly large number of terms/atoms. It is well known that the crystal isP1, Z =2, i.e. all the atoms are located in general
atomic heterogeneity gives rise to severe deviations from idealPositions. & A comparison of the recalculated distribution|&f with
behaviour é.g. Howells et al, 1950) and one of the aims of the |qeal centric [equation (2.1.5.11)] and acentric [equation (2.1.5.8)]
crystallographic statistics has been’ the introduction of a correctP:d-!-'s: denoted byl and 1, respectively.bf The same recalculated

dependence on the atomic composition into the non-ideal p'd'f.,smstogram along with the centric correction-factor p.d.f. [equation

. . fth | K ideal distributi (2.1.7.5)], truncated after two, three, four and five terms (dashed lines),
[O.r a review or the early work on non-ideal diSributions See€ a4 it that accurately computed for the correct space-group Fourier
Srinivasan & Parthasarathy (1976)]. A somewhat less well knownp, 4t [equations (2.1.8.5) and (2.1.8.22)] (solid line).

fact is that the dependence of the p.d.f.’s|Bf on space-group

symmetry becomes more conspicuous as the composition becomes

more heterogeneous.f.Shmueli, 1979; Shmueli & Wilson, 1981).

Hence both the composition and the symmetry dependence of with in the following sections, and the more recently introduced

intensity statistics are of interest. Other problems, which likewis®urier method, to which Section 2.1.8 is dedicated. In what

give rise to non-ideal p.d.f.'s, are the presence of heavy atomsfatiows, we introduce briefly the mathematical background of the

(variable) special positions, heterogeneous structures with completerection-factor approach, apply this formalism to centric and

or partial noncrystallographic symmetry, and the presence afentric non-ideal p.d.f.’s, and present the numerical values of the

outstandingly heavy dispersive scatterers. moments of the trigonometric structure factor which permit an
The need for theoretical representations of non-ideal p.d.f.'sapproximate evaluation of such p.d.f.’s for all the three-dimensional

exemplified in Fig. 2.1.7.H), which shows the ideal centric andspace groups.

acentric p.d.f.'s together with a frequency histogranifvalues,

recalculated for a centrosymmetric structure containing a platin .

atom in the asymmetric unit ¢¥1 (Faggianiet al,, 1980). Clearly, 271.7.2. Mathematical background

the deviation from the Gaussian p.d.f., predicted by the central-limit Suppose thap(x) is a p.d.f. which accurately describes the

theorem, is here very large and a comparison with the possible idegberimental distribution of the random variabte where x is

distributions can (in this case) lead to wrong conclusions. related to a sum of random variables and can be assumed to obey (to
Two general approaches have so far been employed some approximation) an ideal p.d.f., sa{) (x), based on the

derivations of non-ideal p.d.f.’s which account for the abovesentral-limit theorem. In the correction-factor approach we seek to

mentioned problems: the correction-factor approach, to be de&presenp(x) as
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2.2. Direct methods

By C. GAcovAzzo

2.2.1. List of symbols and abbreviations 2.2.3. Origin specification
f; atomic scattering factor gth atom (a) Once the origin has been chosen, the symmetry operators
Z  atomic number ofth atom Cs=(Rs, Ts) and, through them, the algebraic form of the s.f.
N  number of atoms in the unit cell remain fixed.
m  order of the point group ] q \ A shift of the origin through a vector with coordinate,
transformsyy, into
[Uf]pv[gr]q![UT]N! '”:szrvzzjrazzira S;Oh
=1 et on = ¢ — 27h - X, (22.3.1)
{ﬂch‘ias"always abbreviated i@ whenN is the number of atoms in and the symmetry operato@ into C, = (R, 1), where
S T Do = : 2, isz, %sz, Ri=Rg T,=To+(Ry—1)X, s=1,2,...,m (2232
==t (b) Allowed or permissible originsHauptman & Karle, 1953,
st structure factor 1959) for a given algebraic form of the s.f. are all those points in
n.s.f. normalized structure factor direct space which, when taken as origin, maintain the same
cs. centrosymmetric symmetry operatorsCs. The allowed origins will therefore
nes. noncentrosymmetric correspond to those points having the same symmetry environment
Si. structure invariant in the sense that they are related to the symmetry elements in the
S.S. structure seminvariant same way. For instance, T, = 0fors=1, ..., 8, then the allowed

gins inPmmmare the eight inversion centres.
To each functional form of the s.f. a set of permissible origins
will correspond.

(c) A translation between permissible origins will be called a
permissibleor allowed translation.Trivial allowed translations
2.2.2. Introduction correspond to the lattice periods or to their multiples. A change of

. . . origin by an allowed translation does not change the algebraic form
Direct methods are today the most widely used tool for SOIV';@F‘the s.f. Thus, according to (2.2.3.2), all origins allowed by a fixed

C=(R,T) symmetry operatorR is the rotational partT the ©r
translational part
©n phase of the structure factby, = |Fn| exp(ivn)

small crystal structures. They work well both for equal-ato : . :
molecules and when a few heavy atoms exist in the structure. r;ﬂgﬂatlhfgtrm of the s.f. will be connected by translational vectors

recent years the theoretical background of direct methods has beé

improved to take into account a large variety of prior information (Rs=Xp=V, s=1,2,...,m, (22.3.3)

(the form of the molecule, its orientation, a partial structure, the

presence of pseudosymmetry or of a superstructure, the availabilifyereV is a vector with zero or integer components.

of isomorphous data or of data affected by anomalous-dispersiorin centred space groups, an origin translation corresponding to a

effects, ...). Owing to this progress and to the increasimgntring vectorB, does not change the functional form of the s.f.

availability of powerful computers, a number of effective, highlyrherefore all vector8, represent permissible translatioxs, will

automated packages for the practical solution of the phase probld@n be an allowed translation (Giacovazzo, 1974) not only when, as

are today available to the scientific community. imposed by (2.2.3.3), the differendg — T is equal to one or more
Theab initio crystal structure solution of macromolecules seentgttice units, but also when, for ars/the condition

not to exceed the potential of direct methods. Many efforts will :

certainly be devoted to this task in the near future: a report of the(RS ~Xp=V+aBy, s=12...m a=01 (2234)

first achievements is given in Section 2.2.10. is satisfied

This chapter describes both the traditional direct methods tot')?sWe will call any set of cs. or ncs. space groups having the same

and the most recent and revolutionary techniques suitable far, origin translations a Hauptman—Karle group (H—K group).

macromolecules. The 94 ncs. primitive space groups, the 62 primitive cs. groups, the

The theoretical background and tables useful for origify hes. centred space groups and the 30 cs. centred space groups can

specification are given in Section 2.2.3; in Section 2.2.4 the, Clected into 13. 4. 14 and 5 H—K groups, respectively
procedures for normalizing structure factors are summariz auptman & Karle '1953. 1956: Karle & Haur;tman 1961
Phase-determining formulae (inequalities, probabilistic formul @ssinger & Wondratschek. 1975)’_ In Tables 2.2.3.1-2.2.3.4 the

Logatsrgplseg '2u32’?82r?]?r?ar?ttgmg:nm\ll:g)agi, g?\?gnfﬁ]r ggé'io?]”g ZtVé _K groups are given together with the allowed origin translations.
= D3 X . e L nsider a pr f str ref r
Section 2.2.6 the connection between direct methods and relate%d) et us consider a product of structure factors

techniques in real space is discussed. Practical proceduresfmlr Ao
solving crystal structures are described in Sections 2.2.7 and 2.2/8, < "h, ¥

n .
X F = Il Fo
and references to the most extensively used packages are given in =

Section 2.2.9. The techniques suitable for th initio crystal L n A

structure solution of macromolecules are described in Section =exp| i > Aeny | TTIFn [,

2.2.10.2. The integration of direct methods with isomorphous- =1 =1

replacement and anomalous-dispersion techniques is briefly (2.2.35)

described in Sections 2.2.10.3 and 2.2.10.4.

The reader will find full coverage of the most important aspec#§ being integer numbers.
of direct methods in the recent books by Giacovazzo (1998) andThe factorzj”:lAj%j is the phase of the product (2.2.3.5). A
Woolfson & Fan (1995). structure invariant(s.i.) is a product (2.2.3.5) such that
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2.2. DIRECT METHODS
Table 2.2.3.1Allowed origin translations, seminvariant moduli and phases for centrosymmetric primitive space groups

H-K group
(hkP(2,2,2 (h+k P22 (hP(2) (h+k+DP(2)
Space group P1 Pmna Pr% Pﬂmm B R3
n
2 4, 4 ~ 3
p< Pcca p2 Pcc P31m R3m
m m n
p2L Pbam pl p%2me Plc R3c
n m
p2 Pcen p2 p2em FBmL Pm3
c n m
2 4 4 _ i
poL Pbcm P~ mm PZbe Pacl P3
Pmmm Pnnm Picc Pﬁ nm PE Pa3
m n m
Pnnn Pmmn P2 bm P2 e p& PrBm
n m m
4 _
Pcem Pbcn P-nc P—2nm P mm Pi8n
m m
Pban Pbca Pi bm Pﬁ mc PE cc Pn8n
m n m
Pmma Pnma Pﬂ nc P@cm P% cm Pr8m
n m
Pnna P@ mc
m
Allowed origin translations (0, 0, 0); 0,3, 9 (0, 0, 0) (0, 0, 0) (0, 0, 0)
(:0.0; (2:0.9) (0,0,9 0,0,9 )
(0,3,0); (3.3.0) (3.3.0)
(0,0,3); G.3.9) 3.3.9)
Vector hs seminvariantly associated (h, k1) (h+k1I) 0] (h+k+1)
with h = (h,k,1)
Seminvariant modulugs 2, 2,2) 2,2 2 2
Seminvariant phases Peee Pees Pooe Pees Peoe Pees Pooe
Poee Pooe Poeoy Peoco
Number of semindependent phases3 2 1 1
to be specified
n n
Z;_Ajhj =0 (2.2.3.6) ZlA,(hJ Xp)=r1, p=12,... (2.2.3.8)
= =

Since|Fy, | are usually known from experiment, it is often said that/Nerer is a positive integer, null or a negative integer.
s.i.’s are combinations of phases Conditions (2.2.3.8) can be written in the following more useful

form (Hauptman & Karle, 1953):

n
On 2237 S _
2 Aen (223.7) YAy =0 (mod ) (2239)
for which (2.2.3.6) holds. wherehy is the vector seminvariantly associated with the vebfor
For FoF_n FaRFrme FoRcFFan FnRcRF PR @re and ws is the seminvariant modulus. In Tables 2.2.3.1-2.2.3.4, the
examples of s.i.’s fon=1,2,3,4,5. reflection hs seminvariantly associated witih = (h,k,1), the

The value of any s.i. does not change with an arbitrary shift of tlseminvariant moduluses and seminvariant phases are given for
space-group origin and thus it will depend on the crystal structuegery H—K group.
only. The symbol of any groupf. Giacovazzo, 1974) has the structure
(e) A structure seminvariar(s.s.) is a product of structure factorshsLws, where L stands for the lattice symbol. This symbol is
[or a combination of phases (2.2.3.7)] whose value is unchangaaberlined if the space group is cs.
when the origin is moved by an allowed translation. By definition, if the class of permissible origin has been chosen,
LetX,’s be the permissible origin translations of the space grouhat is to say, if the algebraic form of the symmetry operators has
Then the product (2.2.3.5) [or the sum (2.2.3.7)] is an s.s., if, been fixed, then the value of an s.s. does not depend on the origin
accordance with (2.2.3.1), but on the crystal structure only.
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2.3. Patterson and molecular-replacement techniques

By M. G. ROSSMANN AND E. ARNOLD

2.3.1. Introduction An analysis of Patterson peaks can be obtained by considdring
2.3.1.1. Background atoms with form factorg; in the unit cell. Then

Historically, the Patterson has been used in a variety of ways to Fn = f; f exp(2rih - x;).
effect the solutions of crystal structures. While some simple i=1
structures (Ketelaar & de Vries, 1939; Hughes, 1940; Speakmap,. Co
1949; Shoemakeet al, 1950) were solved by direct analysis o?‘%mg Friedel’s law,
Patterson syntheses, alternative methods have largely superseded ||:h|2 =F,-F;
this procedure. An early innovation was the heavy-atom method " "
which depends on the location of a small number of relatively _ , .
strong scatterers (Harker, 1936). Image-seeking methods and = Lzl fi exp(2rih - Xi)} L;l fj exp(—2mih - XJ)] '
Patterson superposition techniques were first contemplated in the
late 1930s (Wrinch, 1939) and applied sometime later (Beeverswhich can be decomposed to
Robertson, 1950; Clastre & Gay, 1950; Garrido, 183Buerger, N NN
1959). This experience provided the encouragement for computer- | 12 _ s~ £24+ 35 f f expi2rih - (% — x))]. (2.3.1.3)
ized vector-search methods to locate individual atoms automatically =1 i
(Mighell & Jacobson, 1963; Kraut, 1961; Hamilton, 1965; Simpson o )
etal.,, 1965) or to position known molecular fragments in unknowRn substituting (2.3.1.3) in (2.3.1.2), we see that the Patterson
crystal structures (Nordman & Nakatsu, 1963: Huber, 1965). TR@nsists of the sum @4 total interactions of whiciN are of weight
Patterson function has been used extensively in conjunction wthat the origin andN(N — 1) are of weightfif; atx; — x;.
the isomorphous replacement method (Rossmann, 1960; Blow, he weight of a peak in a real cell is given by
1958) or anomalous dispersion (Rossmann, &p@idetermine the wi = [pi(x) dx = Z (the atomic number
position of heavy-atom substitution. Pattersons have been used to U
detect the presence and relative orientation of multiple copies of ﬁ ) ) ,
given chemical motif in the crystallographic asymmetric unit in thwhereuU is the volume of the atom By analogy, the weight of a
same or different crystals (Rossmann & Blow, 1962). Finally, tHeea@k in a Patterson (form factgf;) will be given by
orientation and placement of known molecular structures (‘mol- wj = [Pj(u) du = ZZ.
ecular replacement’) into unknown crystal structures can be u
accomplishedria Patterson techniques.
The function, introduced by Patterson in 1934 (Patters
1934,b), is a convolution of electron density with itself and ma
be defined as

JAlthough the maximum height of a peak will depend on the spread
f the peak, it is reasonable to assume that heights of peaks in a
atterson are proportional to the products of the atomic numbers of

the interacting atoms.2

There are a total dfl“ interactions in a Patterson dueNatoms

P(u) = Jp(x) plu+X) o (2311) in the crystal cell. These can be represented ablanN square

matrix whose elements;;, w; indicate the position and weight of

where P(u) is the ‘Patterson’ function at, p(x) is the crystal's the peak produced between atomandj (Table 2.3.1.1). The
periodic electron density and is the volume of the unit cell. The vectors correspo_ndmg to th_e diagonal of this matrix are located at
Patterson function, dF2 series, can be calculated directly from thdhe Patterson origin and arise from the convolution of each atom

experimentally derived X-ray intensities as with itself. This leaveN(N — 1) vectors whose locations depend
on the relative positions of all of the atoms in the crystal cell and
o hemisphere whose weights depend on the atom types related by the vector.
P(u) = — Z |Fh|2cos xh - u. (23.1.2) Complete specification of the unique non-origin Patterson vectors
vz 4 requires description of only thd(N — 1) /2 elements in either the

upper or the lower triangle of this matrix, since the two sets of

The derivation of (2.3.1.2) from (2.3.1.1) can be found in thi¥ectors represented by the two triangles are related by a centre of
volume (see Section 1.3.4.2.1.6) along with a discussion of tRémmetry [uj =X —x; = —Uj = —(X; —x;)|. Patterson vector
physical significance and symmetry of the Patterson functiopsitions are usually represented (@sw), whereu, v andw are
although the principal properties will be restated here. expressed as fractions of the Patterson cell axes.

The Patterson can be considered to be a vector map of all the
pairwise interactions between the atoms in a unit cell. The vectors; o
a Patterson correspond to vectors in the real (direct) crystal cell?&'l'z' Limits to the number of resolved vectors
translated to the Patterson origin. Their weights are proportional tolf we assume a constant number of atoms per unit volume, the
the product of densities at the tips of the vectors in the real cell. Thember of atom# in a unit cell increases in direct proportion with
Patterson unit cell has the same size as the real crystal cell. Tievolume of the unit cell. Since the number of non-origin peaks in
symmetry of the Patterson comprises the Laue point group of tie Patterson function B(N — 1) and the Patterson cell is the same
crystal cell plus any additional lattice symmetry due to Brava&ize as the real cell, the problem of overlapping peaks in the
centring. The reduction of the real space group to the Lalatterson function becomes severdascreases. To make matters
symmetry is produced by the translation of all vectors to thgorse, the breadth of a Patterson peak is roughly equal to the sum of
Patterson origin and the introduction of a centre of symmetry. Thiee breadth of the original atoms. The effective width of a Patterson
latter is a consequence of the relationship between the vesBrs peak will also increase with increasing thermal motion, although
and BA. The Patterson symmetries for all 230 space groups ahes effect can be artificially reduced by sharpening techniques.
tabulated inT A (1983). Naturally, a loss of attainable resolution at high scattering angles
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2.4. Isomorphous replacement and anomalous scattering

By M. VIJAYAN AND S. RAMASESHAN

2.4.1. Introduction It is clear from the foregoing that the isomorphous replacement
ﬁg the anomalous-scattering methods have a long and distin-

ished history. It is therefore impossible to do full justice to them
a comparatively short presentation like the present one. Several
ocedures for the application of these methods have been
veloped at different times. Many, although of considerable
structure determination of strychnine sulfate pentahydrate forical importance, are not extensively used at present for a
Bijvoet and others provides an early example of the applicati riety of reasons. No attempt has been made to discuss them in
tail here; the emphasis is primarily on the state of the art as it

of this method to acentric reflections (Bokhoversl, 1951). The ﬁﬁgts now. The available literature on isomorphous replacement

Isomorphous replacement is among the earliest methods to
employed for crystal structure determination (Cork, 1927). T
power of this method was amply demonstrated in the classical X-
work of J. M. Robertson on phthalocyanine in the 1930s usi
centric data (Robertson, 1936; Robertson & Woodward, 1937).

usefulness of isomorphous replacement in the analysis of comp anomalous scattering is extensive. The reference list given at

protein structures was demonstrated by Perutz and colleag . : : :
(Greenet al,, 1954). This was closely followed by developments i end of this part is representative rather than exhaustive.

e s During the past few years, rapid developments have taken place
the methodology for the application of isomorphous replacement g isgmorprr)\ous repfgcementpand anom%lous-scattering me[t)hods,
protein work (Harker, 1956; Blow & Crick, 1959) and rapidly led t articularly in the latter, as applied to macromolecular crystal-
the first ever structure solution of two related protein crystal hv. Th devel il be d ibed in detail i
namely, ose of myoglobi and haemogloin (Kenceval, PO, These develobments i be cescrbed, i cetl
1960; Culliset al,, 1961). Since then isomorphous replacement h Y grapiy :

been the method of choice in macromolecular crystallography a erefore, they have not been dealt with in this chapter. Significant
most of the subsequent developments in and applications of t elopments in applications of direct methods to macromolecular

method have been concerned with biological macromolecul ystallography have also occurred in recent years. A summary of

: : . ese developments as well as the traditional direct methods on
ma_1]|_rf1]lé/ p;gﬁ;g;ﬂ(o%:u%?elgfoﬁ)glgigl lett?g'in'\gczigfzggn’hla?zgﬁgﬁnch the recent progress is based are presented in Chapter 2.2.
developed in parallel with that of isomorphous replacement. Indeed,
the two methods are complementary to a substantial extent and they
are often treated together, as in this article. Although the most 2.4.2. Isomorphous replacement method
important effect of anomalous scattering, namely, the violation gf4.2.1. Isomorphous replacement and isomorphous addition
Friedel's law, was experimentally observed as early as 1930 (Coste . .
etal, 1930), two decades elapsed before this effect was made use OIEWO crystals are said to be isomorphousaf foth have the same
for the first time by Bijvoet and his associates for the determinatiGRace group and unit-cell dimensions amjl {he types and the
of the absolute configuration of asymmetric molecules as well as RiSitions of atoms in both are the same except for a replacement of
phase evaluation (Bijvoet, 1949, 1954 Bijvatal, 1951). Since ON€ O more atoms in one structure with different types of atoms in
then there has been a phenomenal spurt in the applicationt§ Other (isomorphous replacement) or the presence of one or more
anomalous-scattering effects (Srinivasan, 1972; Ramasesharfidgitional atoms in one of them (isomorphous addition). Consider
Abrahams, 1975; Vijayan, 1987). A quantitative formulation for the#© Crystal structures with identical space groups and unit-cell
determination of phase angles using intensity differences betwdlfi€nsions, one containirlg atoms and the othévl atoms. TheN
Friedel equivalents was derived by Ramachandran & Ram@®@ms in the first structure contain subgetandQ whereas thév

(1956), while Okaya & Pepinsky (1956) successfully developed®PMS in the second structure contain sub$t€' and R. The

Patterson approach involving anomalous effects. The anomalogidPSeP is common to both structures in terms of atomic positions

scattering method of phase determination has since been used i%m%atom types. The atomic po.si.tioniare identical_inds_#lﬁ};am
structure analysis of several structures, including those of a complex $ ut athany %'Ve” atomic p?s'.t'o?]t € atorg type Is di erert%n
derivative of vitamin B, (Dale et al, 1963) and a small protein @"dQ'. The subseR exists only in the second structure Ay and
(Hendrickson & Teeter, 1981). In the meantime, the effect &m denote the structure factors of the two structures for a given

changes in the real component of the dispersion correction afefection,

function of the wavelength of the radiation used, first demonstrated Fn =Fp+Fo (24.21)

by Mark & Szillard (1925), also received considerable attention.

This effect, which is formally equivalent to that of isomorphoudnd

replacement, was demonstrated to be useful in structure determina- Fu = Fp + Fo +Fg, (24.2.2)

tion (Ramasesharet al, 1957; Ramaseshan, 1963). Protein

crystallographers have been quick to exploit anomalous-scatteriigere the quantities on the right-hand side represent contributions
effects (Rossmann, 1961; Kartha & Parthasarathy, 1965; Norifgm different subsets. From (2.4.2.1) and (2.4.2.2) we have

1965; Matthews, 1966; Hendrickson, 1979) and, as in the case of the B _F. — _

isomorphous replacement method, the most useful applications of Fu—Fn=Fn =Fo ~FotFr (2423)
anomalous scattering during the last two decades have been perfitygsabove equations are illustrated in the Argand diagram shown in
in the field of macromolecular crystallography (Kartha, 197%ig. 2.4.2.1.Fq and Fy would be collinear if all the atoms iQ
Watenpauglet al, 1975; Vijayan, 1981). In addition to anomalousvere of the same type and thoseGhof another single type, as in
scattering of X-rays, that of neutrons was also found to hate replacement of chlorine atoms in a structure by bromine atoms.
interesting applications (Koetzle & Hamilton, 1975; Sikka & We have a case of ‘isomorphous replacemenEqf=0 (Fy =
Rajagopal, 1975). More recently there has been a further revilg) —Fg) and a case of ‘isomorphous addition’ if

in the development of anomalous-scattering methods with thg = Fo =0 (Fy4 = Fgr). OnceFy is known, in addition to the
advent of synchrotron radiation, particularly in view of thenagnitudes ofy andFy, which can be obtained experimentally,
possibility of choosing any desired wavelength from a synchrthe two cases can be treated in an equivalent manner in reciprocal
tron-radiation source (Helliwell, 1984). space. In deference to common practice, the term ‘isomorphous
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2.5. Electron diffraction and electron microscopy in structure determination

By J. M. CowLEY, P. (GOoDMAN, B. K. VAINSHTEIN, B. B. ZvYAGIN AND D. L. DORSET

2.5.1. Foreword(J. M. COWLEY) aberrations of cylindrical magnetic lenses have, to date, limited the
resolution of electron microscopes to the extent that the least
Given that electrons have wave properties and the wavelengthgdisolvable distances (or ‘resolutions’) are about 100 times the
in a suitable range, the diffraction of electrons by matter mectron wavelength. However, with microscopes having a
completely analogous to the diffraction of X-rays. While foresolution of better than 2 At is possible to distinguish the
X-rays the scattering function is the electron-density distributiomdividual rows of atoms, parallel to the incident electron beam, in
for electrons it is the potential distribution which is similarly peakethe principal orientations of many crystalline phases. Thus
at the atomic sites. Hence, in principle, electron diffraction may b&ructure images’ can be obtained, sometimes showing direct
used as the basis for crystal structure determination. In practice itépresentation of projections of crystal structures [3e€ (1999),
used much less widely than X-ray diffraction for the determinatiocBection 4.3.8]. However, the complications of dynamical scattering
of crystal structures but is receiving increasing attention as a meansl of the coherent imaging processes are such that the image
for obtaining structural information not readily accessible witintensities vary strongly with crystal thickness and tilt, and with the
X-ray- or neutron-diffraction techniques. defocus or other parameters of the imaging system, making the
Electrons having wavelengths comparable with those of tirgerpretation of images difficult except in special circumstances.
X-rays commonly used in diffraction experiments have energies edrtunately, computer programs are readily available whereby
the order of 100 eV. For such electrons, the interactions with matterage intensities can be calculated for model structures|Béz
are so strong that they can penetrate only a few layers of atoms(d899), Section 4.3.6] Hence the means exist for deriving the
the surfaces of solids. They are used extensively for the studypwbjection of the structure if only by a process of trial and error and
surface structures by low-energy electron diffraction (LEED) amibt, as would be desirable, from a direct interpretation of the
associated techniques. These techniques are not covered in dhigervations.
series of volumes, which include the principles and practice of only The accuracy with which the projection of a structure can be
those diffraction and imaging techniques making use of high-enerdgduced from an image, or series of images, improves as the
electrons, having energies in the range of 20 keV to 1 MeV or moresolution of the microscope improves but is not at all comparable
in transmission through thin specimens. with the accuracy attainable with X-ray diffraction methods. A
For the most commonly used energy ranges of high-energgrticular virtue of high-resolution electron microscopy as a
electrons, 100 to 400 keV, the wavelengths are about 50 tinsteuctural tool is that it may give information on individual small
smaller than for X-rays. Hence the scattering angles are muggions of the sample. Structures can be determined of ‘phases
smaller, of the order of IGrad, the recording geometry isexisting over distances of only a few unit cells and the defects and
relatively simple and the diffraction pattern represents, to a usefotal disorders can be examined, one by one.
first approximation, a planar section of reciprocal space. The observation of electron-diffraction patterns forms an
The elastic scattering of electrons by atoms is several ordersestential part of the technique of structure imaging in high-
magnitude greater than for X-rays. This fact has profourrdsolution electron microscopy, because the diffraction patterns
consequences, which in some cases are highly favourable anadnmused to align the crystals to appropriate axial orientations. More
other cases are serious hindrances to structure analysis work. Orgivgerally, for all electron microscopy of crystalline materials the
one hand itimplies that electron-diffraction patterns can be obtainiethge interpretation depends on knowledge of the diffraction
from very small single-crystal regions having thicknesses equaldonditions. Fortunately, the diffraction pattern and image of any
only a few layers of atoms and, with recently developed techniquepecimen region can be obtained in rapid succession by a simple
having diameters equivalent to only a few interatomic distanceswitching of lens currents. The ready comparison of the image and
Hence single-crystal patterns can be obtained from microcrystallidiéfraction data has become an essential component of the electron
phases. microscopy of crystalline materials but has also been of
However, the strong scattering of electrons implies that tliendamental importance for the development of electron-diffraction
simple kinematical single-scattering approximation, on which masteory and techniques.
X-ray diffraction structure analysis is based, fails for electrons The individual specimen regions giving single-crystal electron-
except for very thin crystals composed of light-atom materialdiffraction patterns are, with few exceptions, so small that they can
Strong dynamical diffraction effects occur for crystals which malye seen only by use of an electron microscope. Hence, historically,
be 100 Athick, or less for heavy-atom materials. As a consequendewas only after electron microscopes were commonly available
the theory of dynamical diffraction for electrons has been waelat the direct correlations of diffraction intensities with crystal size
developed, particularly for the particular special diffractingnd shape could be made, and a proper basis was available for the
conditions relevant to the transmission of fast electrons (sdevelopment of the adequate dynamical diffraction theory.
Chapter 5.2), and observations of dynamical diffraction effects For the complete description of a diffraction pattern or image
are commonly made and gquantitatively interpreted. The possibilitfensities obtained with electrons, it is necessary to include the
has thus arisen of using the observation of dynamical diffracti@ffects of inelastic scattering as well as elastic scattering. In contrast
effects as the basis for obtaining crystal structure information. Tte the X-ray diffraction case, the inelastic scattering does not
fact that dynamical diffraction is dependent on the relative phasegobduce just a broad and generally negligible background. The
the diffracted waves then implies that relative phase informati@verage energy loss for an inelastic scattering event is about 20 eV,
can be deduced from the diffraction intensities and the limitationswhich is small compared with the energy of about 100 keV for the
kinematical diffraction, such as Friedel's law, do not apply. Thecident electrons. The inelastically scattered electrons have a
most immediately practicable method for making use of thisarrow angular distribution and are diffracted in much the same
possibility is convergent-beam electron diffraction (CBED) away as the incident or elastically scattered electrons in a crystal.
described in Section 2.5.3. They therefore produce a highly modulated contribution to the
A further important factor, determining the methods fodiffraction pattern, strongly peaked about the Bragg spot positions
observing electron diffraction, is that, being charged particlegee Chapter 4.3). Also, as a result of the inelastic scattering
electrons can be focused by electromagnetic lenses. The irreducfistecesses, including thermal diffuse scattering, an effective
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3.1. Distances, angles, and their standard uncertainties
By D. E. SANDs

3.1.1. Introduction u-v=u'gy, (3.1.2.6)

A crystal structure analysis provides information from which it isvhere the superscript italit following a matrix symbol indicates a
possible to compute distances between atoms, angles betweanspose. Written out in full, (3.1.2.6) is
interatomic vectors, and the uncertainties in these quantities. In

1
Cartesian coordinate systems, these geometric computations require Lo 911 G2 3 [V 312
the Pythagorean theorem and elementary trigonometry. The natural Y-V = (WUW) | Qa1 G2 Qo | | V2 |. (3127)
coordinate systems of crystals, though, are determined by 031 U32 Os3 v

is the column vector with components,u?,u®, u' is the

coordinate axes) of these systems constrained to be of equal len esponding row vector shown in (3.1.2.7).

or mutually perpendicular.

It is possible, of course, to transform the positional parameters of
the atoms to a Cartesian system and perform the subsequent 3.1.3. Length of a vector
calculations with the transformed coordinates. Along with thg (3.1.2.1), the scalar product of a vector with itself is
coordinates, the transformations must be applied to anlsotrop%
thermal factors, variance—covariance matrices and other important Vv = (V) (3.1.31)
guantities. Moreover, leaving the natural coordinate system of the . .
crystal sacrifices the simplified relationships imposed by transih2€ length ofv is, therefore, given by
tional and point symmetry; for example, if an atom has fractional — vim 12
coordinates<t, X2, x3, an equivalent atom will be at£ xt, X2, X3, v=(VVigi) (3132)
etc. Computation of lengths in a generalized rectilinear coordinate

Fortunately, formulation of the calculations in generalizegystem is thus simply a matter of evaluating the double summation
rectilinear coordinate systems is straightforward, and readijv!g; and taking the square root.
adapted to computer languages (Section 3.1.12 illustrates the use
of Fortran for such calculations). The techniques for these
computations are those of tensor analysis, which provides a 3.1.4. Angle between two vectors
compact and elegant notation. While an effort will be made to &y (3.1.2.1) and (3.1.2.4), the anglebetween vectors andv is
self-sufficient in this chapter, some proficiency in vector algebragéven by
assumed, and the reader not familiar with the basics of tensor T
analysis should refer to Chapter 1.1 and Sands (4982 p = cos “[uvig; /(uv)]. (314.1)

An even more concise expression of equations such as (3.1.4.1) is
possible by making use of the ability of the metric tengoto

symmetry, and only in special cases are the basis vectors gog_#

3.1.2. Scalar product convert components from contravariant to covariant (Sands,
The scalar product of vectorsandv is defined as 1982). Thus,
U-V = UVCOSy, (3.1.2.1) vi=gv!, u=gu, (3.14.2)

whereu andv are the lengths of the vectors agdis the angle and (3.1.2.4) may be written succinctly as
between them. In terms of components,

_ _ u-v=uy (3.1.4.3)
u-v=(ua)-(v'a) (3122)
v =uvia -a ‘
u-v uivja. g (31.2.3) Uov = u, (31.4.4)
V= 3124
. . u YUV o ( ) With this notation, the angle calculation of (3.1.4.1) becomes
In all equations in this chapter, the convention is followed that o = cos uvi/(uv)] = cos uv /(uv)]. (3145)

summation is implied over an index that is repeated once as a
subscript and once as a superscript in an expression; thus, the righe summations in (3.1.4.3), (3.1.4.4) and (3.1.4.5) include only
hand side of (3.1.2.4) implies the sum of nine terms three terms, and are thus equivalent in numerical effort to the
1,1 1 3 computation in a Cartesian system, in which the metric tensor is
UVl + UGz + .+ UV reprgsented by the unit matrixyand there is no numerical distinction
The gj in (3.1.2.4) are the components of the metric tensor [séetween covariant components and contravariant components.
Chapter 1.1 and Sands (198P Appreciation of the elegance of tensor formulations may be
enhanced by noting that corresponding to the metric tegsuaith

9 =& g (3125) componentsg; there is a contravariant metric tensgf with
Subscripts are used for quantities that transform the same way as@@ponents
basis vectors; such quantities are said to transform covariantly. g =a - al (3.1.4.6)

Superscripts denote quantities that transform the same way as

coordinates('; these quantities are said to transform contravarianthe @ are contravariant basis vectors, known to crystallographers

(Sands, 1983). as reciprocal axes. Expressions parallel to (3.1.4.2) may be written,
Equation (3.1.2.4) is in a form convenient for computein which g* plays the role of converting covariant components to

evaluation, with indiced and j taking successively all valuescontravariant components. These tensors thus express mathemati-

from 1 to 3. The matrix form of (3.1.2.4) is useful both for symbolically the crystallographic notions of crystal space and reciprocal

manipulation and for computation, space [see Chapter 1.1 and Sands (4482
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3.2. The least-squares plane

By R. E. MARSH AND V. SCHOMAKER

3.2.1. Introduction The notation is troublesome. Indices are needed for atom number
nd Cartesian direction, and the exponent 2 is needed as well, which
ifficult if there are superscript indices. The best way seems to be
rite all the indices as subscripts and distinguish among them by

By way of introduction, we remark that in earlier days of cryst
structure analysis, before the advent of high-speed computers

o st acron s 2 ST ex .1, 1,2, 3 ot drectons ., p(and Sometmet,. . for
9 proj ms. In any caseatom first then direction if there are two

could be estimated from two-dimensional data [seg, Robertson bscriptsgirection,if only one index for a vector component, but

_(1948)]. To_day, the usual aim in derlylng the coefficients of a pla m(in this section at least) if for a weight or a vector. Ang,
is to investigate the degree of planarity of a group of atoms as fou , for the standard uncertainty of the distance of atom 1 from a
in a full, three-dimensional structure determination. We further no ne. For simplicity in practice, we use Cartesian coordinates

that, for such purposes, a crystallographer will often be served | ?ou ghout

as well by establishing the plane in an almost arbitrary fashion as . : . : .

resorting to the most elaborate, nit-picking and pretentious least- he first task is to find the plane, which we write as

squares treatment. The approximate plane and the associated O=m-r—d=m'Tr—d,

perpendicular distances of the atoms from it will be all he need?1 . . )

as scaffolding for his geometrical and structural imaginatio§/Nerer is here the vector from the origin to any point on the plane

reasonable common sense will take the place of explicit attentigtt usually represents the measured position of an atom3, a

to error estimates. unit vector parallel to the normal from the origin to the pladés
Nevertheless, we think it appropriate to lay out in some detail ttee length of the normal, andn and r are the column

derivation of the ‘best’ plane, in a least-squares sense, througfRresentations ah andr. The I$ast-sq%ares _condmoTn is to find

group of atoms and of the standard uncertainties associated with thR stationary values &= [wi(m'r, — d)°] subject tom'm = 1,

plane. We see two cases: (1) The weights of the atoms in quest¥i? ' k=1, ..., n, the vector from the origin to atokand with

are considered to be isotropic and uncorrelateel the weight weights W, isotropic and without interatomic corr$lat|on% for the

matrix for the positions of all the atoms is diagonal, when written ffoms of the plane. We also wri@as S= [w(m'r —d)“, the

terms of Cartesian axes, and for each atom the three diagobdpScript for atom number being implicit in the Gaussian

elements are equal). In such cases the weights may have litleSgpmationg|....]) over all atoms, as it is also in the angle-bracket

nothing to do with estimates of random error in the atom positim?@tatlon for the weighted average over all atoms, for example in

(they may have been assigned merely for convenience 6t — the weighted centroid of the groups of atoms — just below.

convention), and, therefore, no one should feel that the treatmentirst solve ford, the origin-to-plane distance.

is proper in respect to the theory of errors. Nevertheless, it may be 19S T

desired to incorporate the error estimates (variances) of the atom 0= “28d [w(m'r—d)] =0,
positions into theresults of such calculations, whereupon these T R
variances (which may be anisotropic, with correlation between d = [wmr]/[w] = m(r).

atoms) need to be propagated. In this case the distinction betwegg,
weights(or their inverses) anglariancesmust be kept very clear.

(2) The weights are anisotropic and are presumably derived from a S=[w(m'r—d)? = w{m'(r — ()}’
variance—covariance matrix, which may include correlation terms
between different atoms; the objective is to achieve a truly proper

Gaussian least-squares result. Heresy = r — (r) is the vector from the centroid to atokn Then
solve form. This is the eigenvalue problem — to diagonallzébear
in mind thatAy; is justjwss]) by rotating the coordinate axés., to
find the 3x 3 arraysM andL, L diagonal, to satisfy

T T
This is surely the most common situation; it is not often that one will M'AM =L, M'M=1I

wish to take the trouble, or be presumptive enough, to assignandm are symmetric; the columns of M are the direction
anisotropic or correlated weights to the various atoms. And one Withsines of, and the diagonal elementt afre the sums of weighted

sometimes, perhaps even often, not be genuinely interested indf@ares of residuals from, the best, worst and intermediate planes,
hypothesis that the atoms actually are rigorously coplanar; 8¢ giscussed by SWMB.

instance, one might be interested in examining the best plane
through such a patently non-planar molecule as cyclohexane ;
Moregver, the calgulatioz is simF;:JIe enough, given the 3z/alvailabili%/z'z'l' Error propagation
of computers and programs, as to be a practical realization of theNaseret al. (1973; WMC) carefully discussed how the random
off-the-cuff treatment suggested in our opening paragraph. Téeors of measurement of the atom positions propagate into the
problem of deriving the plane’s coefficients is intrinsicallyderived quantities in the foregoing determination of a least-squares
nonlinear in the way first discussed by Schomagerl. (1959; plane. This section presents an extension of their discussion. To
SWMB). Any formulation other than as an eigenvalue—eigenvectbegin, however, we first show how standard first-order perturbation
problem (SWMB), as far as we can tell, will sometimes go astratheory conveniently describes the propagation of errorivitandL
As to the propagation of errors, numerous treatments have bedren the positions, of the atoms are incremented by the amounts
given, but none that we have seen is altogether satisfactory.  érx = & and the corresponding quantities= rx — (r) (the vectors

We refer all vectors and matrices to Cartesian axes, because ff@h the centroid to the atoms) by the amoungs(s — s + ),
is the most convenient in calculation. However, a more elegapt= & — (£). (The need to account for the variation in position of
formulation can be written in terms of general axesg| as in the centroidj.e. to distinguish betweerny and&, was overlooked
Shmueli (1981)]. by WMC.) The consequent incrementsAnM andL are
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w(mTs)?] = m'wss|m = m"Am.

3.2.2. Least-squares plane based on uncorrelated,
isotropic weights



3.3. Molecular modelling and graphics

By R. DAMOND

3.3.1. Graphics 3 P+29 p-q p—q

3.3.1.1. Coordinate systems, notation and standards M= 3| P~d p+29 p-q

3.3.1.1.1.Cartesian and crystallographic coordinates P-9 P-q p+2q

It is usual, for purposes of molecular modelling and of computer }4_ 21111
graphics, to adopt a Cartesian coordinate system using mutually P 9P qgpq
perpendicular axes in a right-handed system usingrigstéom unit 4, 11111 211
or the nanometre as the unit of distance along such axes, and largely M~ = 3alp q 5+a p g
to ignore the existence of crystallographic coordinates expressed as 111 11 2
fractions of unit-cell edges. Transformations between the two are Z_Z- Z_zZ Z4°%
thus associated, usually, with the input and output stages of any P dp gqgpq
software concerned with modelling and graphics, and it will be
assumed after this section that all coordinates are Cartesian uginghich
the chosen unit of distance as the unit of coordinates. For a
discussion of coordinate transformations and rotations without p=+v1+2cosaa q=+v1-cCosa,
making this assumption see Chapter 1.1 in which formulations
using co- and contravariant forms are presented. which preserves the equivalence of axes. Here the chiralities of the

The relationship between these systems may be written Cartesian and crystallographic axes are the sanei#f chosen
positive, and different otherwise, and the two sets of axes coincide
X =Mx X=M-IX in projection along the triad iff is chosen positive and areout of
phase otherwise.

in which X andx are position vectors in direct space, written as 3 3 1 1.2. Homogeneous coordinates

column vectors, withx expressed in crystallographic fractional . ) o

coordinates (dimensionless) and in Cartesian coordinates Homogeneous coordinates have found wide application in

(dimension of length). computer graphics. For some equipment their use is essential, and
There are two forms dfl in common use. The first of these setéhey are.of valye analytically even if the available hardware does

the first component ok parallel toa* and the third parallel toand ot require their use.

is Homogeneous coordinates employ four quantitie¥, Z andWw,
to define the position of a point, rather than three. The fourth
ap/ sina 0 0 coordinate has a scaling function so that it is the quaityv (as
) ) delivered to the display hardware) which controls the left-right
M = | a(cosy — cosacosf)/sina  bsina 0 positioning of the point within the picture. A point with /W| < 1
acosf bcosa ¢ is in the picture, normally, and those witd /W| > 1 are outside it,
. but see Section 3.3.1.3.5.
sina/ap 0 0 There are many reasons why homogeneous coordinates may be

M~ = | (cosacosf — cosy)/bpsina  1/bsina 0 adopted, among them the following:
_ - _ @) X, Y, ZandW may be held as integers, thus enabling fast
(cosa cosy —cosf)/cpsina —1/ctana: 1/ arithmetic whilst offering much of the flexibility of floating-point
working. A singleWvalue may be common to a whole arraygfy,

in which Z values.
(i) Perspective transformations can be implemented without the
¢ =1/1—-cofa —cog 3 — cod~ + 2 cosa Cosf Cosy need for any division. Only high-speed matrix multiplication using

integer arithmetic is necessary, provided only that the drawing
hardware can provide displacements proportional to the ratio of two
is equal to the volume of the unit cell divided bipG, and is signals,}( andW orYandW. Rotation, translation, sc_:aling and the
‘Ph qdb cyclic permutationef 8 and~ and ofa* *Qand . application of perspective are all affected by operations of the same
EIJ'E((; gggt?asia)rg <e¥ncjI CE staIlIJo rla hicﬁaxesvhave thoé ’sgme cgir'alitfor{n , hamely multiplication of a four-vector by 244 matrix. The
the posit yt . tgk P hardware may thus be kept relatively simple since only one type of
positive square root IS taken. operation needs to be provided for.
The second form sets the first componenXoparallel toa and (iii) Since kX, kY, kZ, kWrepresents the same pointasy, Z, W,
the third component o parallel toc” and is the hardware may be arranged to maximize resolution without risk
of integer overflow.

= sina;singsiny*.

a bcosy ccosp For analytical purposes it is convenient to regard homogeneous
M= |0 bsiny c(cosa— cosf3cosy)/siny transformations in terms of partitioned matrices
0 0 C(p/ Sin"}/ M V X
1l/a -1/atany (cosacosy— cosg)/apsiny < u N> <W>
M1=] 0 1/bsin C0S/3c0Sy — cosa) /by sin
/ v (cosh 7, )/bosiny whereM is a 3x 3 matrix, V and X are three-element column
0 0 siny/cp vectors,U is a three-element row vector ahtdandW are scalars.
Matrices and vectors which are equivalent under the considera-

A third form, suitable only for rhombohedral cells, is tions of (iii) above will be related by the siga in what follows.
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3. DUAL BASES IN CRYSTALLOGRAPHIC COMPUTING

Table 3.4.2.2Untreated lattice-sum results for the dispersion The reciprocal-lattice vectors are defined by the relations
energy (n= 6) of crystalline benzene (kJ mdl| A) a-b=1 j—kK
H k = =

Truncation Number of Number of Calculated =0 J + k.
limit molecules terms energy
A general v r in reciprocal r)i fin
60 6 £a 69.227 general vecto eciprocal spakHr) is defined as
8.0 51 1313 —76.007 H(r) = riby 4 robs + rgbs.
10.0 " 2631 —r8.179 A reciprocal-lattice vectoH(h) is defined by the integer triplet
12.0 126 4718 —79.241 hy, hy, hs (specifying particular values af, r,, r3) so that
14.0 177 7531 —79.726
16.0 265 11274 ~80.013 H(h) = hiby + hzb; + hsbs.
18.0 344 15904 —80.178 In other sections of this volume a shortened notatida used for
20.0 439 22049 —80.295 the reciprocal-lattice vector. In this section the symiih) is used
to indicate that it is a particular value bf(r).
Converged value —80.589 . . . .
g The three-dimensional Fourier transfogtt) of a functionf (x)
is defined by

g(t) = FT3[f(x)] = [f(x) exp(27ix - t) dx.

to Parseval's theorem (described below) this integral is equal 10§ Foyrier transform of the set of points defining the direct lattice

integral of the product of the two Fourier transforms of the ihe set of points defining the reciprocal lattice, scaled by the
functions. Finally, the integral over the Fourier transforms of thﬁ:551
#

e . ) X rect-cell volume. It is useful for our purpose to express the lattice
functions is converted to a sum in reciprocal (or Fourier-transforqy nsform in terms of the Dirac delta functidifx — X,) which is
space. The choice of the convergence funct(R) is not unique; yafined so that for any functio(x)
an obvious requirement is that the relevant Fourier transforms must
exist and have correct limiting behaviour. Nijboer and DeWette f(Xo) = [ 6(x —Xo)f (x) dx.
suggested using the incomplete gamma functionViR). More .
recently, Fortuin (1977) showed that this choice of convergenté® then write
function leads to optimal convergence of the sums in both direct and FT3{36[X(x) — X(d)]} = Vg 1S26[H(r) — H(h)].
reciprocal space: d h

W(R) = I'(n/2,7W?R?)/T'(n/2), First consider the lattice sum over the direct-lattice poii(d),
relative to a particular poinX(x) = R, with omission of the origin
wherel'(n/2) andI'(n/2,7™w?R?) are the gamma function and thelattice point.

incomplete gamma function, respectively: S(n,R) = Y [X(d) —R[™.

00 d=£0
2y _ (n/2)-1 ayp( —
P(ny2, ) ﬂW!Rz ' exp(-t) The special case witR = 0 will also be needed:
and S(n0) = (§0|X(d)|7n~

I'(n/2) =T(n/2,0). Now define a sum of Dirac delta functions
The complement of the incomplete gamma function is f/[X(d)] = Y2 6[X(x) — X(d)].
d+£0

v(n/2,7W?R?) = T(n/2) — I'(n/2,7W*R?).
ThenS can be represented as an integral

S(n,R) = [f'[X(d)]|X — R| ™" dX,
3.4.4. Preliminary derivation to obtain a formula which . i . )
accelerates the convergence of aR™" sum over lattice  inwhich aterm is contributed 8 whenever the direct-space vector
points X(d) X coincides with the lattice vectoX(d), except ford = 0. Now

apply the convergence function &
The three-dimensional direct-space crystal lattice is specified by trPép y g

origin vectorsay, a; and a;. A general vector in direct space is S(nR) = [F(n/2)] ™ [#'X(d)])X - R[™"
defined as x T(n/2,W2|X — R|?) dX
+[0(n/2)] 7 [HX(d)]X -R|™"

wherexy, X, X3 are the fractional cell coordinates ¥f A lattice x y(n/2, 7w X — R|2) dX.
vector in direct space is defined as

X(X) = X181 + Xoap + X3ag3,

The first integral is shown here only for the purpose of giving a
X(d) = dhay + drap + dsas, consistent representation &; in fact, the first integral will be
] o . reconverted back into a sum and evaluated in direct space. The
where dy,d;,d; are integers (specifying particular values obecond integral will be transformed to reciprocal space using

X1, X2, X3) designating a lattice point/q is the direct-cell volume parseval’s theorem [see, for example, Arfken (1970)], which states
which is equal ta, - a; x az. A general point in the direct lattice is that

X(x); the contents of the lattice are by definition identical as the . i
components ok are increased or decreased by integer amounts. JT(X)g"(X) dX = [FTs[ f(X)]FTs[g"(X)] dH.
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4.1. Thermal diffuse scattering of X-rays and neutrons
By B. T. M. WILLIS

4.1.1. Introduction vibrational energy (or phonon). The neutron beam is scattered
elastically by the lattice vibrations, exchanging energy with the
onons. By measuring the energy change for different directions of
e scattered beam, the dispersion relatiofty can be determined.
ockhouse & Stewart (1958) reported the first dispersion curves to
derived in this way; since then the neutron technique has become
e principal experimental method for obtaining detailed informa-
CtH)n about lattice vibrations.
’_geln this chapter we shall describe briefly the standard treatment of
e

Thermal motion of the atoms in a crystal gives rise to a reduction’
the intensities of the Bragg reflections and to a diffuse distributi

of non-Bragg scattering in the rest of reciprocal space. T

distribution is known as thermal diffuse scattering (TDS
Measurement and analysis of TDS gives information about t
lattice dynamics of the crystal,e. about the small oscillatory
displacements of the atoms from their equilibrium positions whi
arise from thermal excitations. Lattice-dynamical models form t
basis for interpreting many physical properties — for exampl
specific heat and thermal conductivity — which cannot be explain
by a static model of the crystal.

Reference to a lattice-dynamical model is found in Newton
Principia, which contains a discussion of the vibrations of a line
chain of equidistant mass points connected by springs. The mo
was used to estimate the speed of sound in air. The vibratio
properties of a one-dimensional crystal treated as a linear chain of
atoms provide the starting point for several modern treatises on the
lattice dynamics of crystals. For modes of vibration of very long wavelength, the crystal can be

The classical theory of the dynamics of three-dimensiontibated as a homogeneous elastic continuum without referring to its
crystals is based on the treatment of Born & vofridan (1912, crystal or molecular structure. The theory of the propagation of
1913). In this theory, the restoring force on an atom is determindtese elastic waves is based on Hooke's law of force and on
not by the displacement of the atom from its equilibrium positioNewton’s equations of motion. As the wavelength of the vibrations
but by its displacement relative to its neighbours. The atomicomes shorter and shorter and approaches the separation of
motion is then considered in terms of travelling waves, or ‘latticedjacent atoms, the calculation of the vibrational properties requires
vibrations’, extending throughout the whole crystal. These wavaknowledge of the crystal structure and of the nature of the forces
are the normal modes of vibration, in which each mode metween adjacent atoms. The three-dimensional treatment is based
characterized by a wavevectqr an angular frequency(q) and on the formulation of Born and von aan, which is discussed in
certain polarization properties. detail in the book by Born & Huang (1954) and in more elementary

For twenty years after its publication the Born—vorirkan termsinthe books by Cochran (1973) and by Willis & Pryor (1975).
treatment was eclipsed by the theory of Debye (1912). In the DebyeBefore setting up the equations of motion, it is necessary to
theory the crystal is treated as a continuous medium instead dh#&oduce three approximations:
discrete array of atoms. The theory gives a reasonable fit to thgi) The harmonic approximationWhen an atom is displaced
integral vibrational properties (for example, the specific heat or them its equilibrium position, the restoring force is assumed to be
atomic temperature factor) of simple monatomic crystals. It fails fwoportional to the displacement, measured relative to the
account for the form of the frequency distribution function whicheighbouring atoms. The approximation implies no thermal
relates the number of modes and their frequency. expansion and other properties not possessed by real crystals; it is

An even simpler model than Debye’s is due to Einstein (19074, reasonable assumption in the lattice-dynamical theory provided
who considered the atoms in the crystal to be vibratinte displacements are not too large.
independently of each other and with the same frequercyBy (i) The adiabatic approximationVe wish to set up a potential
quantizing the energy of each atom in unitdof, Einstein showed function for the crystal describing the binding between the atoms.
that the specific heat falls to zeroTat 0 K and rises asymptotically However, the binding involves electronic motions whereas the
to the Dulong and Petit value farmuch larger thamwe/ks. (Nis  dynamics involve nuclear motions. The adiabatic approximation,
Planck’s constant divided byr2andkg is Boltzmann’s constant.) known as the Born—Oppenheimer approximation in the context of
His theory accounts satisfactorily for the breakdown of equipartinolecular vibrations, provides the justification for adopting the
tion of energy at low temperatures, but it predicts a more rapid falame potential function to describe both the binding and the
off of specific heat with decreasing temperature than is observedynamics. Its essence is that the electronic and nuclear motions may

Deficiencies in the Debye theory were noted by Blackmdre considered separately. This is possible if the nuclei move very
(1937), who showed that they are overcome satisfactorily using lewly compared with the electrons: the electrons can then
more rigorous Born—-von Kanan theory. Extensive X-ray studies ofinstantaneously take up a configuration appropriate to that of the
Laval (1939) on simple structures such as sylvine, aluminium ad@placed nuclei without changing their gquantum state. The
diamond showed that the detailed features of the TDS could onlydggproximation holds well for insulators, where electronic transition
explained in terms of the Born—-von'Kaan theory. The X-ray work energies are high owing to the large energy gap between filled and
on aluminium was developed further by Olmer (1948) and hynfilled electron states. Surprisingly, it even works for metals,
Walker (1956) to derive the phonon dispersion relations (sbecause (on account of the Pauli principle) only a few electrons near
Section 4.1.5) along various symmetry directions in the crystal. the Fermi level can make transitions.

It is possible to measure the vibrational frequencies directly with (i) Periodic boundary conditiong hese are introduced to avoid
X-rays, but such measurements are very difficult as lattiggoblems associated with the free surface. The system is treated as
vibrational energies are many orders of magnitude less than X-@y infinite crystal made up of contiguous, repeating blocks of the
energies. The situation is much more favourable with thermattual crystal. The periodic (or cyclic) boundary conditions require
neutrons because their wavelength is comparable with interatortiiat the displacements of corresponding atoms in different blocks
spacings and their energy is comparable with a quantum arke identical. The validity of the conditions was challenged by
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lattice dynamics of crystals. There follows a section on the
ory of the scattering of X-rays by lattice vibrations, and a similar
ction on the scattering of thermal neutrons. We then refer briefly
1o experimental work with X-rays and neutrons. The final section is
oncerned with the measurement of elastic constants: these
pstants are required in calculating the TDS correction to
asured Bragg intensities (see Section 7.4 @, 1999).

4.1.2. Dynamics of three-dimensional crystals



4.2. Disorder diffuse scattering of X-rays and neutrons

By H. JaGoDzINSKkI AND F. FREY

4.2.1. Scope of this chapter metals or other simple structures. This statement is true as long as
the structure of the ‘kernel’ of defects may be neglected when
Diffuse scattering of X-rays, neutrons and other particles is aompared with the influence of the strain field. Whether dislocations
accompanying effect in all diffraction experiments aimed &b more complicated structures meet this condition is not yet known.
structure analysis with the aid of so-called elastic scattering. InRadiation damage in crystals represents another field of diffuse
this case the momentum exchange of the scattered photon Jeattering which cannot be treated here explicitly. As long as point
particle) includes the crystal as a whole; the energy transfdgefects only are generated, the strain field around these defects is
involved becomes negligibly small and need not be consideredtie most important factor governing diffuse scattering. Particles
diffraction theory. Inelastic scattering processes, however, are duth high energy, such as fast neutrons, protons and others, generate
to excitation processes, such as ionization, phonon scatteting complicated defect structures which have to be treated with the aid
Distortions as a consequence of structural changes cause typa¢ahe cluster method described below, but no special reference is
elastic or inelastic diffuse scattering. All these processes contribgigen here because of the complexity of these phenomena.
to scattering, and a general theory has to include all of them. HenceDiffuse scattering related to phase transitions, in particular the
the exact treatment of diffuse scattering becomes very complextical diffuse scattering observed at or close to the transition
Fortunately, approximations treating the phenomena independemginperature, cannot be discussed here. In simple cases a satisfactory
are possible in most cases, but it should be kept in mind thdgscription may be given with the aid of a ‘soft phonon’, which
difficulties may occasionally arise. freezes at the critical temperature, thus generating typical
A separation of elastic from inelastic diffuse scattering may iemperature-dependent diffuse scattering. If the geometry of the
made if detectors sensitive to the energy of radiation are uséattice is maintained during the transformation (no breakdown into
Difficulties may sometimes result from small energy exchangesystallites of different cell geometry), the diffuse scattering is very
which cannot be resolved for experimental reasons. The latter is teimilar to diffraction phenomena described in this article. Some-
for scattering of X-rays by phonons which have energies of thiemes, however, very complicated interim stages (ordered or
order of 10°—10"3eV, a value which is considerably smaller thamlisordered) are observed demanding a complicated theory for
10 keV, a typical value for X-ray quanta. Another equivalertheir full explanation (sees.g, Dorner & Comes, 1977).
explanation, frequently forwarded in the literature, is the high speedCommensurate and incommensurate modulated structures as
of X-ray photons, such that the rather slow motion of atoms canneell as quasicrystals are frequently accompanied by a typical
be ‘observed’ by them during diffraction. Hence, all movementdiffuse scattering, demanding an extensive experimental and
appear as static displacement waves of atoms, and temperatieeretical study in order to arrive at a satisfactory explanation. A
diffuse scattering is pseudo-elastic for X-rays. This is not true in tieliable structure determination becomes very difficult in cases
case of thermal neutrons, which have energies comparable to thakere the interpretation of diffuse scattering has not been
of phonons. Since thermal diffuse scattering is discussed in Chapteiorporated. Many erroneous structural conclusions have been
4.1, this chapter is mainly concerned with the elastic (or pseudmsblished in the past. The solution of problems of this kind needs
elastic other than thermal) part of diffuse scattering. careful thermodynamical consideration as to whether a plausible
The full treatment of the complicated theoretical background fexplanation of the structural data can be given.
all other kinds of diffuse scattering lies beyond the scope of this Obviously, there is a close relationship between thermodynamics
article. It is also impossible to refer to all papers in this wide armhd diffuse scattering in disordered systems, representing a stable or
complicated field. Different theoretical treatments of one and tineetastable thermal equilibrium. From the thermodynamical point
same subject are often developed, but only some are given herafirview the system is then characterized by its grand partition
most cases those which may be understood most easily — at leastibation, which is intimately related to the correlation functions
the authors’ feeling. As shown in this chapter, electron-densitiged in the interpretation of diffuse scattering. The latter is nothing
fluctuations and distribution functions of defects play an importanther than a kind of ‘partial partition function’ where two atoms, or
role for the complete interpretation of diffraction patterns. Bottwo cell occupations, are fixed such that the sum of all partial
quantities may best be studied in the low-angle scattering rangartition functions represents the grand partition function. This fact
which occasionally represents the only Bragg peak dealing with thields the useful correlation between thermodynamics and diffuse
full information of the distribution function of the defects. Hencescattering mentioned above, which may well be used for a
many problems cannot be solved without a detailed interpretationdgftermination of thermodynamical properties of the crystal. This
low-angle diffraction. subject could not be included here for the following reason: real
Disorder phenomena in magnetic structures are not specificdltiyee-dimensional crystals generally exhibit diffuse scattering by
discussed here. Magnetic diffuse neutron scattering and spedefects and/or disordering effects which are not in thermal
experimental techniques themselves constitute a large subjecuilibrium. They are created during crystal growth, or are
Many aspects, however, may be analysed along similar linesfeszen-in defects formed at higher temperatures. Hence, a
given here. For this particular topic the reader is referred tbermodynamical interpretation of diffraction data needs a careful
textbooks of neutron scattering, where the theory of diffraction sgudy of diffuse scattering as a function of temperature or some
magnetic materials is generally included (seg, Lovesey, 1984). other thermodynamical parameters. This can be done in very rare
Glasses, liquids or liquid crystals show typical diffuse diffractiosases only, so the omission of this subject seems justified.
phenomena. Particle-size effects and strains have an importarfor all of the reasons mentioned above, this article cannot be
influence on the diffuse scattering. The same is true for dislocaticc@mplete. It is hoped, however, that it will provide a useful guide for
and point defects such as interstitials or vacancies. These defectdtamee who need the information for the full understanding of the
mainly described by their strain field which influences therystal chemistry of a given structure.
intensities of sharp reflections like an artificial temperature factor: There is no comprehensive treatment of all aspects of diffuse
the Bragg peaks diminish in intensity, while the diffuse scatterirggattering. Essential parts are treated in the textbooks of James
increases predominantly close to them. These phenomena are (£854), Wilson (1962), Wooster (1962) and Schwartz & Cohen
important from a structural point of view, at least in the case ¢1977); handbook articles are written by Jagodzinski (1963,

407



4. DIFFUSE SCATTERING AND RELATED TOPICS

wavevectors and energies before and after the scattering between
SUNEE S 8 "BE S RE SRR N . object states), andn; P,, are weights of the initial state8y(u) is a
form factor (squared) for the individual particle.

In equation (4.3.2.1)y is essentially momentum transfer. When
the energy transfer is smallAE/E < 6), we can still write
|u| = 2sind/ A, then the sum over final statass readily performed
and an expression of the Waller—Hartree type is obtained for the
total inelastic scattering as a function of angle:

........,‘.!’(10.0-.0- i

...-ouu(!;nwn'

|ineI(U) X T

where

z 2 zZ Z 2
S(u) =Z = > [ fii(u)|” = 23] fi (U], (43.2.2)
j=1 T 7k

and where the one-electrom’s for Hartree—Fock orbitals,
fic(u) = (j|exp(2riu - r)|k), have been calculated by Freeman
(1959, 1960) for atoms up @ = 30. The last sum is over electrons
with the same spin only.

The Waller—Hartree formula may be a very good approximation
for Compton scattering of X-rays, where most of the scattering
occurs at high angles and multiple scattering is no problem. With
electrons, it has several deficiencies. It does not take into account
Fig. 4.3.1.2. Electron-diffraction pattern from a disordered crystal dhe electronic structure of the solid, which is most important at low

17Nb,05.48W0; close to the [001] orientation of the tetragonalalues ofu. It does not include the energy distribution of the

tungsten-bronze-type structure (ljima & Cowley, 1977). scattering. It does not give a finite cross section at zero anglés if
interpreted as an angle. In order to remedy this, we should go back
to equation (4.3.1.2) and decompasénto two components, one

These experimental and theoretical aspects of electron diffréangential part which is associated with angle in the usual way and
tion have influenced the ways in which it has been applied in stud@se normal component along the beam directignwhich may be

of diffuse scattering. related to the excitation energyE = E, — E,, by the expression
In general, we may distinguish three different approaches to the= AE,/2E. This will introduce a factor A(u? +u2) in the
interpretation of diffuse scattering: intensity at small angles, often written ag(? + 62), with AE

(@) The crystallographic way, in which the Patterson- ocestimated from ionization energiet. (Strictly speakingAE is not
correlation-function representation of the local order is emphasizedgonstant, not even for scattering from one shell. It is a weighted
e.g.by use of short-range-order parameters. average which will vary withu.)

(b) The physical model in terms of excitations. These are usually Calculations beyond this simple adjustment of the Waller—
described in reciprocal (momentum) space: phonons, plasetons Hartree-type expression are few. Plasmon scattering has been

(c) Structure models in direct space. These must be derived thyated on the basis of a nearly free electron model by Ferrel (1957):
trial or by chemical considerations of bonds, coordinaties Po

Owing to the difficulties of separating the different components _ 2 _ 2 1 2
in the diffuse scattering, most work on diffuse scattering of d(AE) dQ (U/m*aamyN) (-Im{1/e})/(° + 6¢),  (43.23)

electrons has followed one or both of the two last approache N . o
gere m, v are relativistic mass and velocity of the incident

gctronN is the density of the valence electrons afdE, §) their
lelectric constant. Upon integration ovAE:

do_ B
dQ  2raymvN

. . o . .&?ereG(ﬁ, 6.) takes account of the cut-off ang.. Inner-shell
In the kinematical approximation, a general expression Whighitations have been studied because of their importance to

includes inelastic scattering can be written in the form quoted Q?Sectroscopy. The most realistic calculations may be those of

although Patterson-type interpretation, based upon kinemati
scattering including some dynamical corrections, has also b
tried.

[1/(6° + 62)G(6,0c)], (4.3.2.4)
4.3.2. Inelastic scattering

Van Hove (1954) Leapmanet al. (1980) where one-electron wavefunctions are
m k determined for the excited states in order to obtain ‘generalized

I(u,v) = 22h5k, oscillator strengths’ which may then be used to modify equation

(4.3.1.2).
z . At high energies and high momentum transfer, the scattering will
2 y
X W(U) ) P,y > l{ne| exp{2riu - Ri}|n)| approach that of free electronise. a maximum at the so-called
nj=1 Bethe ridge E = h?u?/2m.

En — En, A complete and detailed picture of inelastic scattering of

x b <V + h ) (4321) glectrons as a function of energy and angle (or scattering variable)

is lacking, and may possibly be the least known area of diffraction
for the intensity of scattering as function of energy transfer afy solids. It is further complicated by the dynamical scattering,
momentum transfer from a systemafdentical particlesR;. Here which involves the incident and diffracted electrons and also the
m and h have their usual meaning&, and k, E,, and E, are ejected atomic electron (seeg.Maslen & Rossouw, 1984).
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4.4. Scattering from mesomorphic structures
By P. S. BERSHAN

4.4.1. Introduction The progression from the completely symmetric isotropic liquid

The term mesomorphic is derived from the prefix ‘meso-', which ?;ough the mesomorphic phases into the crystalline phases can be
|

defined in the dictionary as ‘a word element meaning middle’, a
the term ‘-morphic’, which is defined as ‘an adjective terminatio
corresponding to morph or form'. Thus, mesomorphic order impli
some ‘form’, or order, that is ‘in the middle’, or intermediate
between that of liquids and crystals. The name liquid crystalline w.
coined by researchers who found it to be more descriptive, and
two are used synonymously. It follows that a mesomorphic,
liquid-crystalline, phase must have more symmetry than any one ﬂ
the 230 space groups that characterize crystals. P a
A major source of confusion in the early liquid-crystal teraturg

scribed in terms of three separate types of order. The first, or the
olecular orientational order, describes the fact that the molecules
gve some preferential orientation analogous to the spin orienta-
nal order of ferromagnetic materials. In the present case, the
olecular quantity that is oriented is a symmetric second-rank
sor, like the moment of inertia or the electric polarizability,
er than a magnetic moment. This is the only type of long-range
er in the nematic phase and as a consequence its physical
perties are those of an anisotropic fluid; this is the origin of the
me liquid crystal. Fig. 4.4.1.8)is a schematic illustration of the
matic order if it is assumed that the molecules can be represented
oblong ellipses. The average orientation of the ellipses is
ligned; however, there is no long-range order in the relative
ositions of the ellipses. Nematic phases are also observed for disc-
aped molecules and for clusters of molecules that form micelles.
ese all share the common properties of being optically
gisotropic and fluid-like, without any long-range positional order.
“The second type of order is referred to as bond orientational
der. Consider, for example, the fact that for dense packing of
eres on a flat surface most of the spheres will have six
hbouring spheres distributed approximately hexagonally

was concerned with the fact that many of the molecules that fo
liquid crystals also form true three-dimensional crystals wit
diffraction patterns that are only subtly different from those g
other liquid-crystalline phases. Since most of the origin
mesomorphic phase identifications were performed using
‘miscibility’ procedure, which depends on optically observeg
changes in textures accompanying variation in the sampl
chemical composition, it is not surprising that some thre
dimensional crystalline phases were mistakenly identified
mesomorphic. Phases were identified as being either the sam
%;jgfeGr?g; féog(,)opdhba;» elsgtggt \;Vr?éeaﬁ[]%vdgﬁs%a%gsgfwtﬁg \(Al;(')?l?g ound it. If a perfect two-dimensional triangular lattice of
were very clever in deducing the microscopic structure responsi elg?tlitges\:\fgu\lléetr)i %?igﬁ{ggtﬁdtﬁ;tggéee Sﬁgerfﬁﬁﬁﬁc&gﬁﬁgfgvon
for the microscopic textures, the phases were labelled in the orde h t iz6 that thi ty' f order. in which
discovery as smectic-A, smectic-Btc. without any attempt to rﬁ" Wwe have come to rehcognlze IIaI t IS ype o t?]r er, Inw I%I
develop a systematic nomenclature that would reflect the und € hexagons are everywhere parajiel to one another, IS possible
lying order. Although different groups did not always assign t ven when there is no lattice. This type of order is referred to as
same letters to the same phases, the problem is now resolved an g orientational order, and bond orientational order in the

. L ; nce of a lattice is the essential property defining the hexatic
assignments used in this article are commonly accepted (Gra ofases (Halperin & Nelson, 1978; Nelson & Halperin, 1979;

Goodby, 1984). e .
Fig. 4.4.1.1 illustrates the way in which increasing order can bYeoung, 1979; Birgeneau & Litster, 1978).

assigned to the series of mesomorphic phases in three dimensions

listed in Table 4.4.1.1. Although the phases in this series are the

most thoroughly documented mesomorphic phases, there are others

not included in the table which we will discuss below. Table 4.4.1.1Some of the symmetry properties of the series of
three-dimensional phases described in Fig. 4.4.1.1

The terms LRO and SRO imply long-range or short-range order, respectively,
and QLRO refers to ‘quasi-long-range order’ as explained in the text.

Isotropic
T Molecular Positional order
. I}_/Ioltectl}lar ! orientation | Bond
Gy e er order within | orientation | Normal | Within
r Fo— Phase layer order to layer | layer
Smectic-A e 5 | Smectic-A (SmA) | SRO SRO SRO | SRO
T layers 3 | Smectic-C (SmC) LRO LRO* SRO SRO
Bond 20
HexatioB SmecticI | orientational Z | HexaticB LRO* LRO QLRO | SRO
, P‘i‘f“ : S | Smectic-F (SmF) LRO LRO QLRO| SRO
ositiona.
= .
d = Smectic-l (Sml) LRO LRO QLRO SRO
CrystalB within
T layers Crystalline-B (CrB) | LRO LRO LRO LRO
Asymmetric Crystalline-G (CrG) | LRO LRO LRO LRO
Crystal-E axial site .
symmetry v Crystalllne-J (CrJ) LRO LRO LRO LRO
. Crystalline-E (CrE) | LRO LRO LRO LRO
<—Tilted phases— Crystalline-H (CrH) | LRO LRO LRO | LRO
Fig. 4.4.1.1. lllustration of the progression of order throughout trecrySta”'ne'K (€r | LRO LRO LRO LRO

sequence of mesomorphic phases that are based on ‘rod-like’ molecules.
The shaded section indicates phases in which the molecules are titt@theoretically, the existence of LRO in the molecular orientation, or tilt,
with respect to the smectic layers. implies that there must be some LRO in the bond orientationvécelversa.
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4.5. POLYMER CRYSTALLOGRAPHY

its structure is described by too many variable parameters for thenilable. However, MacGillavry & Bruins (1948) showed that the
parameter space to be exploiegriori. It is then necessary to phasecylindrically averaged Patterson functiocan be calculated from
the fibre diffraction data and construct an electron-density map irftbre diffraction data. Consider the functi@d(r, z) defined by

which the molecular structure can be fitted and then refined. The 0 00

second example above would belong to this class. The second clagy(r, z) = > [ali(R)Jo(27Rr) cog2nlz/c)2nR dR,  (4.5.2.58)

of methods therefore mimics conventional protein crystallography 1=00

quite closely. The third class of problems applies when the structurﬁereE 1forl = 0and 2 foll > 0. which can be calculated from
I = = 1

is large, but there are too few diffraction data to attempt phasing u intensity distribution on a continuous fibre diffraction pattern
the usual determination of atomic coordinates. The solution to S%g}ng equations (4.5.2.7), (45.2.10), (45.2.17) and (4.5.2.58)
S

ga?db:)epr?i;ivzagtli%snf(r)?r:ofr?s(la(itnodcase and usually involves model ows thatQ(r,z) is the cylindrical average of the Patterson

An important parameter in structure determination by fibrfémCt'on’P(r"P’z)’ of one moleculei.e.
diffraction is the degree of overlap (that results from the cylindrical . 2n
averaging) in the data. This parameter is equal to the number of Q(r,2) = (1/27) [ P(r, ¢,2) dp. (45259
significant terms in equation (4.5.2.17) or the number of independent 0

termsinequation (4.5.2.24), and depends on the positionin reciproggk - symbols onP(r,y,z) and Q(r,2) indicate that these are
space and, for a polycrystalline fibre, the space-group symmetry. Thigterson functions of a single molecule, as distinct from the usual
number of degrees of freedom in a particular datum is equal to tWipgtterson function of a crystal, which contains intermolecular
this number (since each structure factor generally has real apgratomic vectors and is periodic with the same periodicity as the
imaginary parts), andis denoted in this sectiombpetermination of  crystal.P(r, , 7) is periodic only along and is therefore, strictly, a
the Gy(R) from the cylindrically averaged dati(R) therefore patterson function alongand an autocorrelation function along
involves separating then/2 amplitudes|Gn (R)| and assigning ang y (Millane, 199®). The cylindrically averaged Patterson
phasestoeach. The electron density canbe calculated fré@tf  contains information on interatomic separations along the axial
using equations (4.5.2.7) and (4.5.2.11). direction and in the lateral plane, but no information on orientations
of the vectors in the lateral plane.

symmetry by

The first step in analysis of any fibre diffraction pattern is oy 2 — Relt (Ree) Jo( 2Rl ) cOS 272/ 4.5.2.60
determination of the molecular helix symmetry. Only the zero- Qlr2) ;h;: il (R Jo(2nRnr) cog2riz/€), )

order Bessel term contributes diffracted intensity on the meridian )

and referring to equation (4.5.2.6) shows that the zero-order teYffiere the sums are over all the overlapped reflectigR) on the
occurs only on layer lines for whidhis a multiple ofu. Therefore, diffraction pattern, given by equation (4.5.2.24). It is easily shown
inspection of the distribution of diffraction along the meridiadhatQ(r, ) is related to the Patterson functiéir, ¢, z) by

allows the value ofu to be inferred. This procedure is usually o

effective, but can be difficult ifu is large, because the first Q(r,2) = (1/2x) [ P(r, ,2) d, (45.2.61)
meridional maximum may be on a layer line that is difficult to 0

measure. This difficulty was overcome in one case by Franklin . . . :
Holmes (1958) by notir31/g that the second Bessel term gn the equ%@fre’ mdthls C?SzP(r'I‘P'Z)I is the dL_JsuaI_ Patterson _funct::)n
is n—u, estimating Goo(R) using data from a heavy-atom pressed in cylindrical polar coordinategg. it contains a

L 2 . ; ntermolecular (both intra- and inter-unit cell) interatomic vectors
derivative (see Section 4.5.2.6.6), subtracting this figfR), and ! : :
using the behaviour of the remaining intensity for snitio infer and has the same translational symmetry as the unit cell. The

. : indrically averaged Patterson function for polycrystalline fibres
Eﬂgnifuer of the next Bessel term [using equation (4.5.2.14)] refore contains the same information as it does for noncrystalline

Referring to equations (4.5.2.6) and (4.5.2.14) shows that t. res {.e.no angular information in the lateral plane), except that it

distribution of Ry for 0< | < u depends on the value of 0 contains information on intermolecular separations.
min .

, . . ) AT Low resolution and cylindrical averaging, in addition to the usual
Therefore, inspection of the intensity distribution close to the <" . P : S .
meridian often allows to be inferred. Note, however, that th ec%fflcultles with interpretation of Patterson functions, has resulted in

distribution of Ry, does not distinguish between the heli he cylindrically averaged Patterson function not playing a major

: o e - “tole in structure determination by fibre diffraction. However,
symmetriesty and u,_. Any remaining ambiguities in the helix; formation provided by the cylindrically averaged Patterson
symmetry need to be resolved by steric considerations, orﬁg_‘

: - ; d : ! ction has, in a number of instances, been a useful component
gs;%';%?; %s;{r;g of models with the different symmetries against t fibre diffraction analyses. A good review of the application of

For a polycrystalline system, the cell constants are determinp tterson functions in fibre diffraction is given by Stubbs (1987).

from the(R, Z) coordinates of the spots on the diffraction pattern mnovclzg?cggt?ngom ethglci)r\:vd_rrigﬁ)lytg\?eP;é;fjorPaailt)tgrgghne feuqnucatlitgrrw
described in Section 4.5.2.6.4. Space-group assignment is base ves the strong vectors related to axially invariant (or
analysis of systematic absences, as in conventional crystallograplyy. drically symmetric) parts of the map, and can aid interpretation
However, in some cases, because of possible overlap of system b | ) bb 'S also | h
absences with other reflections, there may be some ambiguit mbaet al, 1380; Stubbs, 1987). It is also important when
Shace-aroun assianment. However. the space groun can aiwa ulating cylindrically averaged Patterson functions to use data
opace-group g OO pace group y %at a resolution that is appropriate to the size and spacings of
limited to one of a few possibilities, and ambiguities can usually

; o ) atures one is looking for (Stubbs, 1987).
resolved during structure determination (Section 4.5.2.6.4). Cylindrically averaged Patterson functions were used in early

applications of fibre diffraction analysis (Franklin & Gosling, 1953;

Franklin & Klug, 1955). The intermolecular peaks that usually
In fibre diffraction, the conventional Patterson function cannot lm®minate in a cylindrically averaged Patterson function can help to

calculated since the individual structure-factor intensities are ritgfine the locations of multiple molecules in the unit cell.
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4.6. Reciprocal-space images of aperiodic crystals

By W. STEURER AND T. HAIBACH

4.6.1. Introduction {HI =% halh € Z} is countably denseCountably dense
means that the dense set of Bragg peaks can be mapped one-to-
'¥ne onto the set of natural numbers. Hence, the Bragg reflections
@3 be indexed with integer indices on an appropriate basis. The
Fourier module of the projected reciprocal-lattice vectdfshas
the structure of Z module of rankn. A Z module is a free Abelian
oup, its rankn is given by the number of free generators
ationally independent vectors). The dimension of anodule is
&t of the vector space spanned by it. The vedpexre the images
.the vectorsd; projected onto the physical spavé. Thus, by
finition, the 3D reciprocal space of an idegleriodic crystal
nsists of a countably dense set of Bragg reflections only. Contrary
an idealcrystal a minimum distance between Bragg reflections
S not exist in an aperiodic one. In summary, it may be stressed
the termsaperiodicand periodic refer to properties of crystal
ructures indD space. InnD space, as considered here, lattice
mmetry is always present and, therefore, the tenystalis used.
Besides thaperiodic crystalsnentioned above, other classes of
eriodic structureswith strictly defined construction rules exist
e Axel & Gratias, 1995). Contrary to the kind of aperiodic
stals dealt with in this chapter, the Fourier spectra of aperiodic
gotures considered in the latter reference are continuous and

The discovery of materials with icosahedral diffraction symmet
(Shechtmaret al,, 1984) was the main reason for the reassessm
of the definition of crystallinity and for the introduction of the
concept ofaperiodic crystals The first aperiodic crystali.e. a
material with Bragg reflections not located only at reciprocal-latti
nodes, was identified long before (Dehlinger, 1927). In t
following decades a wealth of incommensurately modulated pha
and composite crystals were discovered. Nevertheless, only a
attempts have been made to develop a crystallography of aperi
crystals; the most powerful of these was the higher-dimensio
approach (see de Wolff, 1974, 1977; Janner & Janssen, 19
198(,b; de Wolff et al., 1981). In fact, incommensurate structureg,
can be easily described using the higher-dimensional approach
also, fully equivalently, in a dual way: as a three-dimensional (3[3{éfi
combination of one or more periodic basic structures and one
several modulation waves (de Wolff, 1984). However, with th
discovery of quasicrystals and their noncrystalline symmetries,
latter approach failed and geometrical crystallography including t
higher-dimensional approach received new attention. For m
recent reviews of the crystallography of all three types of aperio é/
crystals see van Smaalen (1995), of incommensurately modul
structures see Cummins (1990), of quasicrystals see Steurer (1
1996), of quasicrystals and their crystalline approximants s

Goldman & Kelton (1993) and Kelton (1995). Textbooks Ofyqir o At ; ; ;
. ¢ periodic approximationsc(ystalline approximangsis not
quasicrystals have been written by Janot (1994) and Senecqi@lpiy defined. Finite crystal size, static and dynamic disorder,

(1995). chemical impurities and defects broaden Bragg peaks and cause

According to the traditional crystallographic definition, @eal it se diffraction phenomena. Furthermore, the resolution function
crystal corresponds to an infinite 3D periodic arrangement @ ihe diffraction equipment is limited.

identical structure motifs. Its symmetry can be described by one Ofy,\yever, the concept of describing an aperiodic structure as a
the 230 3D space groups. Mathematically, a periodic structure physical-space section of aD crystal (see Section 4.6.2) is
be generated by the convolution of a function representing gy seful if it significantly simplifies the description of its
structure motif with a lattice function. The structure motif can b \ctural order. Thus, depending on the shape of atwmic
given, for instance, by the electron-density distributién) of one  gyrfaces which gives information on the atomic ordering,
primitive unit cell of the structure. The lattice functiag(r) iS  jncommensurately modulated structures (IMSs, Sections 4.6.2.2
represented by a setéfunctions at the nodes= ) _i_;ka ofa3D a4 4.6.3.1), composite structures (CSs, Sections 4.6.2.3 and
lattice A with basisa, i=1,...,3, andk € Z (Z is the set of 4.6.3.2), or quasiperiodic structures (QSs, Sections 4.6.2.4 and
integer numbers). In reciprocal space, this convolution corresponfg.3.3) can be obtained from irrational cuts. The atomic surfaces
to the product of the Fourier transfor@(H) of the lattice function are continuougn — d)-dimensional objects for IMSs and CSs, and
g(r) and the Fourier transfori(H) = [ p(r) exp(2ziH -r) dr of discrete(n — d)-dimensional objects for QSs. A class of aperiodic
the structure motifo(r). G(H) is represented by the reciprocalcrystals with discrete fractal atomic surfaces also exists (Section
lattice A* decorated witld functions on the reciprocal-lattice nodest.6.2.5). In this case the Hausdorff dimension (Hausdorff, 1919) of
H =2 ha’, with the reciprocal-basis vectoss, i = 1,...,3, the atomic surface is not an integer number and smallerrihad.
defined bya; - & = & andh; € Z. The productG(H) x F(H) is  The most outstanding characteristic feature of a fractal is its scale
called the weighted reciprocal lattice; the weights are given by thvariance: the object appears similar to itself ‘from near as from
structure factor$=(H). Thus, the characteristic feature of an idedhr, that is, whatever the scale’ (Gouyet, 1996).
crystal in direct and reciprocal space is the existence of a lattice. InTo overcome the problems connected with experimental
direct space, this lattice is decorated with identical structure motifssolution, the translational symmetry of periodic crystals is used
preserving translational and point symmetry in the framework ek a hard constraint in the course of the determination of their
space-group symmetryln reciprocal space, only the pointstructures. Hence, space-group symmetry is taken for granted and
symmetry between structure factors is maintained. Foarier only the local atomic configuration in a unit cell (actually,
spectrum(or Fourier image i.e. the Fourier transform) of the asymmetric unit) remains to be determined. In reciprocal space,
electron-density distribution of an ideal crystal consists of this assumption corresponds to a condensation of Bragg reflections
countably infinite set of discrete Bragg peaks with a strictly definedth finite full width at half maximum (FWHM) toé peaks
minimum distance. accurately located at the reciprocal-lattice nodes. Diffuse diffrac-
This crystal definition can be generalizedto- 3 dimensions. A tion phenomena are mostly neglected. This extrapolation to the
d-dimensional D) ideal aperiodic crystaban be defined asdD existence of an ideal crystal is generally out of the question even if
irrational section of am-dimensional D, n > d) crystal withnD samples of very poor quality (high mosaicity, microdomain
lattice symmetry. The intersection of tm® hypercrystalwith the structure, defects, . . .) are investigated.
dD physical space is equivalent to a projection of the weight®d  The same practice is convenient for the determination of real
reciprocal lattice ¥* = {H =" hdi|h € Z} onto the dD aperiodic structures once the type of idealized aperiodic ordering is
physical space. The resulting set (Fourier moduld) = ‘known’. Again, the global ordering principle is taken as a hard
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tain only in a few cases additional sharp Bragg reflections (
ks).
CExperimentally, the borderline between aperiodic crystals and



4.6. RECIPROCAL-SPACE IMAGES OF APERIODIC CRYSTALS

Table 4.6.2.1. Expansion of the Fibonacci sequenc€onsidering periodic lattices, these eigenvalues are integer

B, = o"(L) by repeated action of the substitution rute numbers. For quasiperiodic ‘latticesquasilattice$ they always
S—L,L—LS correspond talgebraic numbergPisot numbers A Pisot number

w, vs are the frequencies of the letters L and S in wBd is the solution of a polynomial equation with integer coefficients. It

is larger than one, whereas the modulus of its conjugate is smaller

than unity: A; > 1 and |X\z] <1 (Luck et al, 1993). The total
Bn u vs n lengthsl? and 8 of the wordsA,, B, can be determined from the
L 1 0 0 equationd) = A7I* andIP = AJI® with the eigenvalue\;. The left
LS 1 1 1 Perron—Frobenius eigenvectar; of S i.e. the left eigenvector
LsL > 1 > associated W|th/\1, (_jetermmes the rat|o'S:L to'ﬂ.: The right
Perron—Frobenius eigenvectwi of Sassociated with; gives the
LSLLS 3 2 3 relative frequencies, 1 and for the letters S and L (for a definition
LSLLSLSL 5 3 4 of the Perron—Frobenius theorem see Luek al, 1993, and
LSLLSLSLLSLLS 8 5 5 references therein).
LSLLSLSLLSLLSLSLLSLSL 13 8 6 The general case of an alphalfet= {L;...Ly} with k letters
: : : (intervals) L;, of which at least two are on incommensurate length
Fni1 Fn n scales and which transform with the substitution ma%ix
k
Li— ZSJ Lj,
— 1+; J:1
= 14 1 ' can be treated analogouslyis ak x k matrix with non-negative
1 integer coefficients. Its eigenvalues are solutions of a polynomial
1"'—1 n equation of rankk with integer coefficients (algebraic or Pisot

numbers). The dimensiamof the embedding space is generically

contains only the number 1. This means thatis the ‘most equal to the number of letters (intervalg) involved by the
irrational’ number, i.e. the irrational number with the worst substitution rule. From substitution rules, infinitely many different
truncated continued fraction approximation to it. This might b&D quasiperiodic sequences can be generated. However, their
one of the reasons for the stability of quasiperiodic systems, wheratomic surfaces in theD description are generically of fractal
plays a role. The strong irrationality may impede the lock-in intshape (see Section 4.6.2.5).
commensurate systems{ional approximants The quasiperiodic 1D density distributigrir) of the Fibonacci

By associating intervale(g.atomic distances) with length ratio chain can be represented by the Fourier series
7 to 1 to the letters L and S, a quasiperiodic structs(e _ I EmE
(Fibonacci chai can be obtained. The invariance of the rgt%o of plr) = (V) % F(HT) exp(—2riHT 1),
lengths L/S= (L + S)/L = 7 is responsible for the invariance of . . -
the Fibonacci (chain )u/nder scaling by a factByn € Z. Owing to a W'thHHH € R (the set of real numbers). Ihe Fourier coefficients
minimum atomic distance S in real crystal structures, the full set5fH') form a Fourier moduleM™ = {H" =3 "_,ha/|h € 7}
inverse symmetry operators™ does not exist. Consequently, thetquivalent to aZ module of rank 2. Thus a periodic function in
set of scaling operators= {7° = 1,7%, ...} forms only a semi- 2D space can be defined by
group,i.e. an associative groupoid. Groupoids are the most general p(rl,r) = (1/V) 32 F(H) exp—2ri(H! - rl + H* . r b)),
algebraic sets satisfying only one of the group axioms: the H
associative law. The scaling properties of the Fibonacci sequendgerer = (rll,r+) € ¥ andH = (HI,H') € ©* are, by construc-

can be derived from the eigenvalues of the scaling m&tbor this  tion, direct and reciprocal lattice vectors (Figs. 4.6.2.8 and 4.6.2.9):
purpose the equation

det|S—Al| =0

with eigenvalue\ and unit matrid has to be solved. The evaluation
of the determinant yields the characteristic polynomial

X -A-1=0,
yielding in turn the eigenvalues; = [1+ (5)"?/2=7, X =
[1- (5)1/2]/2 =-1/r and the eigenvectorsw; =

-
Wy = _11 Ir ) Rewriting the eigenvalue equation gives for the

first (i.e. the largest) eigenvalue

0 1\/1\ T Y 1

1 1)\7) \1+7)  \2) " "\7)
Identifying the eigenvecto(i) with <f shows that an infinite
Fibonacci sequencgr ) remains invariant under scaling by a factorig. 4.6.2.8. 2D embedding of the Fibonacci chain. The short and long
7. This scaling operation maps each new lattice vectoupon a  distances S and L, generated by the intersection of the atomic surfaces
vectorr of the original lattice: with the physical spac&!, are indicated. The atomic surfaces are

represented by bars parallel Y. Their lengths correspond to the
s(rr) = S(r). projection of one unit cell (shaded) updft.
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5.1. Dynamical theory of X-ray diffraction

By A. AUTHIER

5.1.1. Introduction the reflected wave. This is due to the fact that it is based on the
ourier transform of the electron density limited by the external
hape of the crystal. This is not important when one is only

1912 and Bragg's law was derived in 1913 (Bragg, 191 terested in measuring the reflected intensities. For any problem

, . . . = here the phase is important, as is the case for multiple reflections,
Geometrical and dynamical theories for the intensities of t terference between coherent blocks, standing waeés,

ditfracted X-rays were developed by Darwin (12H4. His gynamical theory should be used, even for thin or imperfect

The first experiment on X-ray diffraction by a crystal wa
performed by W. Friedrich, P. Knipping and M. von Laue i

dynamical theory took into account the interaction of X-rays wit fvstals
matter by solving recurrence equations that describe the balanc éﬁntil the 1940s. the applications of dynamical theory were

partially wansmitted and partially reflecied amplitudes at ea r%sentially intensity measurements. From the 1950s to the 1970s,
L?tt'ce plane. This is the first form of the dynamical theory of X-ra plications were related to the properties (absorption, interference,
iffraction. It gives correct expressions for the reflected intensiti $ pagation) of wavefields in perfect or nearly perfect crystals:
and was extended to the absorbing-crystal case by Prins (1930% £y 21 is transmission, diffraction of spherical waves, interpreta-
second form of dynamical theory was introduced by Ewald (1914 n of images on X-ray topographs, accurate measurement of form
as a continuation of his previous work on the diffraction of optic %ctors lattice-parameter mapping. In recent years, they have been
waves by crystals. He took into account the interaction of X-rays, e mainly with crystal optics, focusing and the design of
with matter by considering the crystal to be a periodic distributio onochromators for synchrotron radiation [see, for instance
of dipoles which were excited by the incident wave. This theo ' '

also gives the correct expressions for the reflected and transmi t:ég?gn% ﬁ:!{gﬁ?&csk u%i?]g1t)i]1’etrs]?alnodciﬁu(-)vr\]/ac\)/fegur)nrgfhitj (:[gf;alf or
intensities, and it introduces the fundamental notion of a wavefie g 9 !

P . stance, the reviews by Authier (1989) and Zegenhagen (1993)],
which is necessary to understand, the propagation of X-rays ] empts to determine phases using multiple reflections [see, for
perfect or deformed crystals. Ewald’s theory was later modified stance, Chang (1987) and “Mmer & Weckert (1995)]
\éggcrl}ggg élgsollz/'inWhl\ela)S(\r/]voevl\ll’ZdetrLagtiégi ilrrl]tzrarﬁg?j?urgowi(tjh aracterization of the crystal perfection of epilayers and super-

: y g Maxwer s €q - - . ttices by high-resolution diffractometry [see, for instance, Tanner
continuous, triply periodic distribution of dielectric susceptibility. |

. R ; : : 1990) and Fewster (1993)8tc.
is this form which is most widely used today and which will b : ; :
presented in this chapter. For reviews of dynamical theory, see Zachariasen (1945), von

- : ; aue (1960), James (1963), Batterman & Cole (1964), Authier
The geometrical (or kinematical) theory, on the other han 70), Kato (1974), Brmmer & Stephanik (1976), Pinsker (1978),
considers that each photon is scattered only once and that hier & Malgrange (1998), and Authier (2001). Topography is
interaction of X-rays with matter is so small it can be neglected. cribed in C?ha qur 57 4TC (1999), in Tanner (19?6? arﬁ)d 3{”
can therefore be assumed that the amplitude incident on ev p y :

. ; O . . nner & Bowen (1992). For the use of Bragg-angle measurements
diffraction centre inside the crystal is the same. The total diffract accurate lattice-parameter mapping, see Hart (1981).

amplitude is then simply obtained by adding the individu . . ; AT
amplitudes diffracted by each diffracting centre, taking into accoug ﬁ‘tgggnx‘gir f flsgmﬁgffggggg&epts in electrodynamics is given in

only the geometrical phase differences between them a

neglecting the interaction of the radiation with matter. The result

is that the distribution of diffracted amplitudes in reciprocal space is i

the Fourier transform of the distribution of diffracting centres in 9-1.2. Fundamentals of plane-wave dynamical theory

physical space. Following von Laue (1960), the expressi®ni 2.1.Propagation equation

geometrical theorywill be used throughout this chapter when . . _

referring to these geometrical phase differences. The wavefunction' associated with an electron or a neutron
The first experimentally measured reflected intensities were fgam isscalar while an electromagnetic wave is\ector wave.

in agreement with the theoretical values obtained with the moféhen propagating in a medium, these waves are solutions of a

rigorous dynamical theory, but rather with the simpler geometricgfopagation equation For electrons and neutrons, this is

theory. The integrated reflected intensities calculated usifghrainger's equation, which can be rewritten as

geometrical theory are proportional to the square of the structure AV + 4723(1+ x)¥ = 0, (5.1.2.1)

factor, while the corresponding expressions calculated using

dynamical theory for an infinite perfect crystal are proportional twherek = 1/ is the wavenumber in a vacuum,= ¢/W (¢ is the

the modulus of the structure factor. The integrated intensifytential in the crystal and/is the accelerating voltage) in the case

calculated by geometrical theory is also proportional to the volunoé electron diffraction ande = —2mV(r)/h%k? [V(r) is the Fermi

of the crystal bathed in the incident beam. This is due to the fact tigieudo-potential anldis Planck’s constant] in the case of neutron

one neglects the decrease of the incident amplitude as it progreshffsaction. The dynamical theory of electron diffraction is treated

through the crystal and a fraction of it is scattered away. According Chapter 5.2 [note that a different convention is used in Chapter

to geometrical theory, the diffracted intensity would therefor.2 for the scalar wavenumbet:= 27/\; compare, for example,

increase to infinity if the volume of the crystal was increased tmuation (5.2.2.1) and its equivalent, equation (5.1.2.1)] and the

infinity, which is of course absurd. The theory only works becaugiynamical theory of neutron diffraction is treated in Chapter 5.3.

the strength of the interaction is very weak and if it is applied to very In the case of X-rays, the propagation equation is deduced from

small crystals. How small will be shown quantitatively in Sectionsaxwell's equations after neglecting the interaction with protons.

5.1.6.5 and 5.1.7.2. Darwin (1922) showed that it can also Pellowing von Laue (1931, 1960), it is assumed that the positive

applied to large imperfect crystals. This is done using the modelaifarge of the nuclei is distributed in such a way that the medium is

mosaic crystals (Braggt al,, 1926). For perfect or nearly perfecteverywhere locally neutral and that there is no current. As a first

crystals, dynamical theory should be used. Geometrical the@yproximation, magnetic interaction, which is very weak, is not

presents another drawback: it gives no indication as to the phaseaen into account in this review. The propagation equation is
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5.2. Dynamical theory of electron diffraction

By A. F. Moobig, J. M. GCOwWLEY AND P. GOODMAN

5.2.1. Introduction 5.2.3. Forward scattering

Since electrons are charged, they interact strongly with matter, Sgreat deal of geometric detail can arise at this point and, further,
that the single scattering approximation has a validity restrictedtttere is no generally accepted method for approximation, the
thin crystals composed of atoms of low atomic number. Further,\arious procedures leading to numerically negligible differences
energies of above a few tens of keV, the wavelength of the electrand to expressions of precisely the same form. Detailed descriptions
is so short that the geometry of two-beam diffraction can l the geometry are given in the references.
approximated in only small unit cells. The entrance surface of the specimen, in the form of a plate, is
It is therefore necessary to develop a scattering theory specifictmsen as thg, y plane, and the direction of the incident beam is
electrons and, preferably, applicable to imaging as well as t@ken to be close to theaxis. Components of the wavevector are
diffraction. The development, started by Born (1926) and Betlta@belled with suffixes in the conventional wdgy = ky + Ky is the
(1928), and continuing into the present time, is the subject of mansverse wavevector, which will be very small comparel,tdn
extensive literature, which includes reviews [for instance: Howilis notation, the excitation error for the reflection is given by
(1978), Humphreys (1979)] and historical accounts (Goodman, ) 2
1981), and is incorporated in Chapter 5.1. Here, an attempt will be Gh = Kg — |Ko + 27h|
made to present only that outline of the main formulations which, it 47r|Ky| '

is hoped, will help the nonspecialist in the use of the tables. NO Af, intuitive method argues that, sincg/W < 1, then the

attempt will be made to follow the historical development, whic : - -
has been tortuous and not always logical, but rather to seek omponent of the motion alongis little changed by scattering.

simplest and most transparent approach that is consistent wj chz,z n;%‘t:gﬁotr:%s; gsf)tubtg)gjgr;gexp{lkzz} and neglecting
brevity. Only key points in proofs will be sketched in an attempt to ' o

display the nature, rather than the rigorous foundations of the o 11 _, 9
where
5.2.2. The defining equations 2 2
2
No many-body effects have yet been detected in the diffraction of XY~ ox2 + o2’

fast electrons, but the velocities lie well within the relativistic

region. The one-body Dirac equation would therefore appear to &edv(x,y, 0) = exp{i(kx + kyy)}.

the appropriate starting point. Fujiwara (1962), using the scatteringEquation (5.2.3.1) is of the form of a two-dimensional time-
matrix, carried through the analysis for forward scattering, amtependent Schdinger equation, with the coordinate replacing
found that, to a very good approximation, the effects of spin atimme. This form has been extensively discussed. For instance,
negligible, and that the solution is the same as that obtained frétnwie (1966) derived what is essentially this equation using an
the Schidinger equation provided that the relativistic values foexpansion in Bloch waves, Berry (1971) used a Green function in a
wavelength and mass are used. In effect a Klein-Gordon equatitgiailed and rigorous derivation, and Goodman & Moodie (1974),
(Messiah, 1965) can be used in electron diffraction (Buxton, 19783ing methods due to Feynman, derived the equation as the limit of

in the form the multislice recurrence relation. A method due to Corastesl.
) ) (1982) brings out the relationship between the HEED and LEED
V2¢b+8ﬁ m|e’90¢b+8” mo|efW 1 W vy = 0. equations. Equation (5.2.2.1) is cast in the form of a first-order
h? h? 2myc? system,
Here, W is the accelerating voltage ang, the potential in the o [ Yo 0 1 b
crystal, is defined as being positive. The relativistic values for mass 5, Mo | = —(V2 +K2+2kop) O Mo |.
i 2 12\—1/2 . , 0z X,y ap
and wavelength are given loy = my(1 — v-/c*)"~“, and taking & 0z 0z

now to represent the modulus of the electronic chajee, A splitting matrix is introduced to s%%arate the wavefunction into
B 21-1/2 the forward and backward components,, and the fast part of the
A = h[2meeW(1 + eW/2moc)] phase is factored out, so thaf = ¢* exp{=£ik,z}. In the resulting
and the wavefunction is labelled with the subschpin order to matrix differential equation, the off-diagonal terms are seen to be
indicate that it still includes back scattering, of central importan&nall for fast electrons, and equation (5.2.2.1) reduces to the pair of

to LEED (low-energy electron diffraction). equations
In more compact notation, +
0 _ i(vz +K3) +op| v (5.2.3.2)
(V2 4+ K21+ ¢/W)Jthp = (V2 + K + 2kop)p = 0. (5.2.2.1) 0z 2, *v 0

Herek = |k| is the scalar wavenumber of magnitude/, and the The equation fory*™ is the Lontovich & Fock (1946) parabolic
interaction constant = 2rme\/h?. This constant is approximately €quation.
1073 for 100 kV electrons.

For fast electronsy/W is a slowly varying function on a scale of
wavelength, and is small compared with unity. The scattering will
therefore be peaked about the direction defined by the incidéfguation (5.2.3.1) is a standard and much studied form, so that
beam, and further simplification is possible, leading to a forwardiany techniques are available for the construction of solutions. One
scattering solution appropriate to HEED (high-energy electrari the most direct utilizes the causal evolution operator. A recent
diffraction). account is given by Gratias & Portier (1983).
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5.2.4. Evolution operator



5.3. Dynamical theory of neutron diffraction

By M. SCHLENKER AND J.-P. QIGAY

5.3.1. Introduction corresponding neutron distributions are termed cold, thermal and

Neutron and X-ray scattering are quite similar both in the geomep)()t’ respectively.

: / - ; .7 The interaction of a neutron with an atom is usually described in
of scattering and in the orders of magnitude of the basic quantiti : : 4 :
When the neutron spin is neglectede. when dealing with trms of scattering lengths or of scattering cross sections. The main

; : ; ntribution corresponding to the nuclear interaction is related to
scatering by perfect non-magnetic crystals, the formalism and 93 strong force. The interaction with the magnetic field created by
results of the dynamical theory of X-ray scattering can be ve oms with electronic maanetic moments is comparable in
simply transferred to the case of neutrons (Section 5.3. 9 P

Additional features of the neutron case are related to the neut ﬁ‘gthde to the nuclear term.
spin and appear in diffraction by magnetic crystals (Section 5.3.3) . L
The low intensities available, coupled with the low absorption oFS-2-2- Scattering lengths and refractive index
neutrons by most materials, make it both necessary and possible tBhe elastic scattering amplitude for scattering vestdt(s), is
use large samples in standard diffraction work. The effect défined by the wave scattered by an object placed at the origin when
extinction in crystals that are neither small nor bad enough to tiee incident plane wave i¥; = Aexpli(ko - r — wt)], written as
amenable to the kinematical approximation is therefore vety, = A[f(s)/r] expli(kr — wt)] with k= |ko| = |ko + §| = 27/ .
important in the neutron case, and will be discussed in Sectipnthe case of the strong-force interaction with nuclei, the latter
5.3.4 together with the effect of crystal distortion. Additionatan be considered as point scatterers because the interaction range is
possibilities arise in the neutron case because the neutrons candrg small, hence the scattering amplitude is isotropic (independent
manipulated from outside through applied fields (Section 5.3.%9). the direction ofs). It is also independent o except in the
Reasonably extensive tests of the predictions of the dynamigidinity of resonances. It is conventionally written a$ so that
theory of neutron diffraction have been performed, with theostvalues ob, called the scattering length, are positive. A table of
handicap of the very low intensities of neutron beams as compaesgperimentally measured values of the scattering lertgtegiven
with X-rays: these are described in Section 5.3.6. Finally, the IT C for the elements in their natural form as well as for many
applications of the dynamical theory in the neutron case, andilividual isotopes. Itis apparent that the typical order of magnitude
particular neutron interferometry, are reviewed in Section 5.3.7.is the fm (femtometerj.e. 10->m, or fermi), that there is no
systematic variation with atomic number and that different isotopes
have very different scattering lengths, including different signs. The
first remark implies that scattering amplitudes of X-rays and of
5.3.2. Comparison between X-rays and neutrons with ~ neutrons have comparable magnitudes, because the characteristic

spin neglected length for X-ray scattering (the scattering amplitude for forward
L ) scattering by one free electron)Rs= 2.8 fm, the classical electron
5.3.2.1.The neutron and its interactions radius. The second and third points explain the importance of

An excellent introductory presentation of the productiorf}eutrons in structural crystallography, in diffuse scattering and in
properties and scattering properties of neutrons is available (Schéfigll-angle scattering. Scattering of neutrons by condensed matter
& Fak, 1993, and other papers in the same book). A stimulatifigPlies the use of the bound scattering lengths, as tabulatdddn
review on neutron optics, including diffraction by perfect crystald,ne ‘free’ scattering length, used in some presentations, is obtained
has been written by Klein & Werner (1983). X-rays and neutror®y multiplying the bound scattering lengths By(A + 1), whereA
are compared in terms of the basic quantities in Table 4.1.3T ofis the mass of the nucleus in atomic units. _ ,

C (1999), where Chapter 4.4 is devoted to neutron techniques. A descr_lpt|on interms of_an interaction potential is possible using

The neutron is a massive particle for which the values relevanttf® Fermi pseudo-potential, which in the case of the nuclear
diffraction are: no electric charge, rest mass- 1.675x 10~ kg, Interaction with a nucleus atro can be written as
angular momentum eigenvalues along a given directibfi2 (spin  V.(r) = (h*/2rm)bé(r —ro), where § denotes the three-dimen-
1y and a magnetic moment ef1.913 nuclear magneton, meaningional Dirac distribution.

that its component along a quantization directioncan take ~ Refraction of neutrons at an interface can be conveniently
eigenvalues i, = F0.996x 106 Am2 The de Broglie described by assigning a refractive index to the material, such that

wavelength is A=h/p where h is Planck's constant the wavenumber in the materidl,is related to that in a vacuurk,

(h=2rh=6.625% 103* J s) andp is the linear momentum; Py k= nko. Here

p = mvin the non-relativistic approximation, which always applies ) 12

in the context of this chaptewy being the neutron’s velocity. n=(1- A Zb'

The neutron’s wavelength), and kinetic energyE., are thus VvV & ! ’

related by X= h/(2mEc)1/2, or, in practical units,

A [A] = 9.05/(E, [meV])%. Thus, to be of interest for diffraction where the sum is over the nuclei contained in volusheWith

by materials, neutrons should have kinetic energies in the rarfge fypical values is very close to 1 and  n= (\3/27V)Y" /b is

to 10? meV. In terms of the velocity) [A] = 3.956/(v [km s7%)). typically of the order of 10°. This small value, in the same range as
Neutron beams are produced by nuclear reactors or by spallation X-rays, gives a feeling for the order of magnitude of key

sources, usually pulsed. In either case they initially have an eneggantities of the dynamical theory, in particular the Darwin width

in the MeV range, and have to lose most of it before they can Béas discussed in Chapter 5.1. It also makes total external reflection

used. The moderation process involves inelastic interactions witbssible on materials for which;b; > 0: this is the basis for the

materials. It results in statistical distributions of energy, hence péutron guide tubes now installed in most research reactors, as well

velocity, close to the Maxwell distribution characteristic of thas for reflectometry.

temperatureT of the moderator. Frequently used moderators are The notations prevailing in X-ray and in neutron crystallography

liquid deuterium (D, i.e. ?Hy) at 25 K, heavy watefD,0) at room are slightly different, and the correspondence is very simple: X-ray

temperature and graphite allowed to heat up to 2400 K; tlhéomic scattering factors and structure factors are numbers. When
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