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Now Accepting Registrations via the school website

Siena 2006 : IUCr School on Basic Crystallography

(modeled on the British Crystallographic Association (BCA) Durham school)

Certosa di Pontignano,

University of Siena, ltaly
27" August — 2 September 2006

http://www.iucr.orq/iucr-top/comm/cteach/siena2006/

School organisers: Paola Spadon
(Current  chair of the Teaching
Commission) and Marcello Mellini

Lecturers and tutors include:
Alexander Blake, Gervais Chapuis,
Jacqueline Cole, Giuseppe Cruciani,
Robert Gould, Giovanni Ferraris,

Anthony Linden, Peter Main and David
Watkin.
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Lecture topics include:

Introduction; Introduction to diffraction;
Direct Methods; Maths of refinement; LSQ
Outline; Data Collection; Powder Diffraction;
Neutron and Synchrotron Studies; Twinning;
Derivation of results, analysis and
interpretation; Database

European /
Crystallographic [

Association

The City

Siena is described as one of the
finest examples of a Medieval
city. It is in the Italian province
of Tuscany and has direct bus
connection to Florence (1 hour)
and Rome (3 hours).

The Venue

The Certosa di Pontignano has its
origins as a medieval 14th century
monastary. It is now run by the

University of Siena. Attractively
placed on the top of a hill, it is
surrounded by vineyards; with a
direct view to the town of Siena,
and a famous Chianti winery.

School Aims

This is an immersive school,
focusing on the crystallographic
fundamentals, modeled the school
on the successful (BCA) Durham
School. There will be a mixture of
lectures and  tutorials. All the
tutorials are pen and paper
exercises, consistent with the aims
of properly teaching students the
fundamentals of crystallography.
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Einstein’s tongue for teaching crystallography to biologists

Philippe Dumas®, Julien Vanwinsberghe' and Vincent Cura®

'Equipe de Cristallographie, UPR9002 du CNRS conventionnée avec I’ULP, IBMC, 15 rue René
Descartes 67084 Strashourg cedex France, 2lGBMC, 1 rue Laurent Fritz, Illkirch, France, WWW:
http://www-ibmc.u-strasbg.fr/arn/Dumas/ ; E-mail: p.dumas@ibmc.u-strasbg.fr

Abstract

Teaching crystallography to students in Biology is a difficult task, particularly because many of them
arrived there because ‘there are no more Maths or Physics in Biology’. In order to visualize really the
phenomenon of diffraction without X-rays we have used a classical optical bench requiring a LASER
(A=0.6328 um), a pinhole as a beam expander and two lenses.

Following a method originating from Bragg, and analysed in depth by Taylor & Lipson, we used as
crystals 24x36 B&W photographs of a 80x60 repeats of the well-known ‘Einstein’s tongue’ (cell
parameters a = 0.45 mm, b = 0.4 mm.). This allowed to record a diffraction pattern on films mounted in
the back focal plane of the second lens. The diffraction data extend to order 21 (more than 500 visible
Bragg’s spots), which corresponds to 20 um resolution.

In order to illustrate the principle of the MIR method, we have made ‘heavy atom derivatives’ by adding
small dots on Einstein’s face (one site per derivative), and we have ‘collected new data’. Our hope was to
go really all the way through with experimental data to ‘solve the structure’. For practical reasons, this
structure solution step was illustrated with calculated data only. This nevertheless shows very well how a
recognizable picture is obtained after ‘MIR phasing’ with only 50 reflections, and what is the effect of
experimental noise.

All programming was performed with Mathematica (Wolfram Research), which allowed to develop very
rapidly the necessary code and to make everything visible on our web site at http://ibmc6187.u-
strasbg.fr:8080/webMathematica/bioCrystallographica/.

1. Introduction

One major issue when teaching crystallography to students in biology is their low average level in
mathematics. Indeed, many of these students arrived there because ‘there are no more Maths or Physics
in Biology’. In addition, even the knowledge of basic tools normally acquired much before going to
university is often lacking. Many of them, for example, do not master anymore elementary algebraic
calculations. For example, replacing an expression like x°x% by x"% or recognizing that
| X+ y|#| X|+]| y|should not be considered as obvious. Needless to say, evoking a ‘scalar product’ or

something like eigusually pulls many faces. Such a situation may be tackled in three different ways. One

approach corresponds to considering that a ‘scalar product’ and e'are known since they should be
known. Another approach is the exact opposite and corresponds to pretending that mathematics can be
seen as superfluous since many students ignore them. Finally, a third approach corresponds to fighting
with the real problems, that is using mathematics because this cannot be avoided, but by trying as much
as possible to use intuitive arguments, graphics representation and interactive documents. This is
obviously our approach and the goal of the present note is to present it. In particular, we will expose how
we give strong weight to classical optics. The course span eight weeks with two-hour teaching classes
per week and six ‘travaux dirigés’ (tutorials). In addition one class of ‘travaux pratiques’ (practicals)
was devoted to using an optical bench for illustrating the diffraction phenomenon.
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2. Students concerned by this course

The students concerned by our teaching were those at the level of ‘License’ or ‘Maitrise’ of ‘Université
Louis Pasteur’ in Strasbourg. Up to recently, these two years corresponded respectively to the third and
fourth year at university. In fact, because of an ongoing reorganization of the French academic cursus in
order to make it comparable with that of most European countries, the denomination of ‘License’ is now
used collectively for the first three years at university (and not only for the third one), whereas the
denomination of ‘Maitrise’ (for the fourth year) has now disappeared since the fourth and fifth year are
now grouped under the name of ‘Master’. The students were broadly interested in biology swith, for a
part of them, an emphasis on chemistry.

3. Refreshing their mathematical knowledge

If not original, it appears necessary to devote the first course to recalling the basic tools in mathematics.
One considers essentially the elementary properties of complex numbers from the very beginning,
essentially through their geometrical meaning. It often appears that several students appreciate to have

these things recalled. One insists on the use of e'? and on the fact that this represents a considerable
simplification in calculations. In order to demystify this cryptic formula involving ‘complex’ numbers or,
even worse, ‘imaginary’ numbers, we make a simple heuristic ‘proof” of it following either one of two
possibilities.

The first possibility consists in writing that ‘rotating a complex’ z by dé gives an elementary variation
dz=1iz d@ (which only involves elementary geometry). One then recall that this is formally equivalent

to the differential equation dN =aNdt representing the growth of bacteria during their so-called
‘exponential phase’ if & >0, or the decrease of the number of radioactive atoms if « <0 (all biologists
are aware of that !). It is then a game of arriving heuristically at z = z, €' in exactly the same way as one

arrives at N = N e“ .

The second possibility consists in decomposing a rotation by € into n steps 4/n and making N — .
Starting with z,, one elementary step yields z, =z, +iz,0/n=z,(1+16/n), two elementary steps yield
2,=2,+iz,0In=z,(1+i6/n)=z,(1+i 6/n)’, etc... from which one derivesz, =z,(1+i 6/n)". Here also,
one makes reference to real numbers by considering (1+ x/n)" for n — oo and one recalls two elementary
properties of the logarithms, viz. Ln(1+ x/n)" =nLn(1+ x/n) and Ln(1+ x/n) = x/n for x/n — 0 to show
that (1+ x/n)" —e* when n — 0. Substituting i @ for X yields the result.

These two ‘proofs’ are not really complete since there always is a gap when passing from real to complex
numbers, but our goal is not doing ‘pure mathematics’, but demystifying tools that are complicated only
in appearance.

4. Making a detour to optics

X-rays have two obvious drawbacks: first, they are not visible and, second, they cannot easily and safely
be manipulated. Therefore teaching diffraction with visible light is extremely valuable. In addition, this
allows introducing the effects of diffraction in optical instruments, for example in the microscope, which
is of real interest for biologists. Moreover, the expanded beam of a LASER falling onto a simple 24x36
B&W photograph gives rise to a very nice diffraction pattern in the back focal plane of a lens disposed
behind the photograph. The system that we used is well known and is described on our web site.
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Principle of an optical bench
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Fig 1: Schematic of experimental apparatus to to convert Einstein’s face into a 2D diffraction pattern via
http://ibmc6187.u-strashg.fr:8080/webMathematica/bioCrystallographica/teaching/teaching03.html

It should be mentioned that this ‘optical transform’ method has a long history in crystallography and
electron microscopy. A lot of details about the historical features can be found in Taylor & Lipson (1964),
whose reading is of utmost interest! As recalled by Taylor & Lipson, Bragg (1939, 1942), when all
computations were done by hand, was the first' to try obtaining a projection of an electron density map by
an optical synthesis. Bragg, in fact, realized that, from Abbe’s theory of image formation, such a
projection could be obtained as the result of the interference of the beams diffracted by a screen with
holes representing a weighted reciprocal lattice section. An important problem, however, had to be
solved: each beam had to emerge from the corresponding hole with the correct phase. For that, Bragg
covered each hole with a precisely cut piece of mica sheet in such a way that ‘the light polarized in the
slow direction lags precisely half a wavelength behind the light polarized in the fast direction’. If all
pieces of mica are oriented exactly in the same direction, then all holes introduce the same phase change
to the diffracted rays, but rotating by 90° a piece of mica introduces a phase change by 180° relative to
the others. Therefore, reconstructing an image of a centrosymmetric projection can be obtained by
rotating correctly a set of the mica patches. Variations on this theme and improvements by others are
referenced in Taylor & Lipson (1964) (see also Lipson & Cochran (1966)).

Our goal was not only to illustrate the formation of a diffraction pattern, but also how can be recovered by
calculations the original image from the knowledge of the diffraction intensities, which is the essential
problem in crystallography. For that, we wanted to be as close as possible of the method in use for
solving a structure in real macromolecular crystallography.

As it is well known, there are two methods, first the venerable Multiple Isomorphous Replacement (MIR)
method going back to Perutz, Kendrew, Harker and Blow & Crick (see Watenpaugh (1985) for a short
summary and references) and, second, the Multiple Anomalous Dispersion (MAD) method, now widely
used thanks to synchrotrons (Hendrickson, 1991). Although the two methods differ greatly in the way
they are put into practice, they are conceptually extremely related. Indeed, in both cases the entire set of
phases is recovered from very localized changes in the electron density. For the MIR method, the change

" In fact Born & Wolff recall in their classic ‘Principle of optics’ (1959) that the same idea was independently proposed by
Boersch (1938).
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is of a chemical nature, i.e. it is obtained by introducing a heavy atom that binds at specific places,
hopefully without introducing any other disturbances. For the MAD method, the change is of a purely
physical nature, i.e. it is obtained by changing the response of some anomalous scatterers to X-rays
merely by changing their wavelength. Therefore, at the basic crystallographic level of this course, it was
quite justified to concentrate on the MIR method.

5. Making ‘native crystals’ : a tout Seigneur, tout honneur

Our original goal was to go all the way through the experimental steps of structure solution. Therefore,
we wanted to measure the diffracted intensities of a ‘native’ 2D-crystal, as well as the diffracted
intensities of two or more ‘derivatives’ of it. From these experimental measures, we planned to obtain
really the necessary phases to compute the original image making the unit cell of our 2D-crystal. We
evidently expected a lot of errors in phase determination and, for that reason, we chose as ‘a molecule’
the extremely well known Einstein’s tongue that is most easily recognized (see our web site). Note that
this points to the general problem of ‘pattern recognition’, which is quite relevant in crystallography, at
least now, since we are no more faced, like Kendrew or Perutz, with the problem of building the first
structure of myoglobin or of hemoglobin. Indeed, an experienced crystallographer recognizes most easily
a B-sheet from an a-helix, even in a rather noisy electron density map. The same is true with the
recognition of structural features in nucleic acids, particularly after the remarkable achievement of
ribosome structure solution (for a review, Noller, 2005).

Our 2D-crystal was made of 80x60 repeats of Einstein’s face. We first made a large 60cmx45cm image

of the crystal by assembling carefully smaller photocopied pieces and we made a 24mmx36mm B&W
photographic reduction of it.

6. Making ‘heavy atom derivatives’ from our ‘native Einstein crystal’
In order to make a ‘heavy atom derivative’, we followed very closely its definition: ‘a structure differing

from the native one by addition of one or of a few heavy atom(s)’. We thus modified the original image of
the august face by adding a gaussian ‘beauty spot’ representing faithfully an additional atom.

The coordinates of "heavy atoms" are (0.58, 0.54) , (0.32, 0.8) , (0.85, 0.61).

Native__s_tructure Derivative # 1 Derivative # 2

e

Fig 2: Heavy atom derivatives of Einstein’s face via http://ibmc6187.u-
strashqg.fr:8080/webMathematica/bioCrystallographica/teaching/teaching08.jsp

7. Building a detector, collecting and integrating data

We used photographic films as this was still the case in real crystallography 15-20 years ago. Since the
diffraction pattern obtained from the 24mmx36mm slides is ca. 8 cm in diameter the films had to be
maintained in a holder that was built in PVC. Also, the longest exposure time necessary to measure high
resolution spots was as long as 20 minutes; it was thus necessary to darken completely the room and to
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protect the film against all parasite light. For that, we simply made a box in heavy card board to enclose
the holder. The film was protected against the intense direct beam by a piece of modeling clay. An
example of a film is shown on our web site.

To integrate the data, the films were scanned and the resulting numerical images were processed with a
program written in the Mathematica language. This will not be described further because of practical
problems mentioned in the following.

8. The practical limitations of this educational project

As stated above, our initial goal was to go all the way through the steps of structure determination. There
is no reason why this should not be possible. However, real life has many reasons to make difficult things
that appear possible in principle. The first problem that was faced is that we did not have enough time
with the students to go ‘all the way through’ these steps. It has to be recognized that the things remained
essentially theoretical for the students (even though they had practicals with the optical bench). For
example, it was totally unthinkable to ask them recording the diffraction patterns on films.

We should also recognize that we did not pay enough attention to the optical setup. In brief, after we had
collected data on films, we realized that, quite unexpectedly, the diffraction patterns showed a violation of
Friedel’s law (see Fig 3). This was invisible by mere eye inspection of the projected diffraction pattern.
This is only after reading of Taylor & Lipson (1964) that we understood that more care has to be brought
on the alignment of the optical system.

Fig 3: Diffraction pattern obtained with an Einstein's face crystal and showing a violation of Friedel's
law because of insufficient care in the optical setup; see Taylor & Lipson (1964). (image via
http://ibmc6187.u-strashg.fr:8080/webMathematica/bioCrystallographica/teaching/teaching07.jsp)

Therefore, the phasing of the structure shown to the students was done with purely calculated data.
Nonetheless, this allows us to illustrate very well how the phasing is obtained by minimizing a ‘Lack Of
Closure’ function (Blundell & Johnson, 1976) and the deleterious effect of ‘experimental’ noise (see Fig
4). Even an experienced crystallographer, we think, may consider the resulting images with some interest.
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Without noise With noise Resolution in use

hmax =5, Resolution = 80 pm

2

hmax =9, Resolution = 44 pm

R

hmax =13 , Resolution =31 pm

hmax = 17 , Resolution = 24 pm

Fig 4: Phasing Einstein’s face from the diffraction data using a noise level of ““2”* via http://ibmc6187.u-
strasbg.fr:8080/webMathematica/bioCrystallographica/teaching/teachingl6.jsp
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9. Practical aspects of programmation

All necessary calculations for the purpose of phasing and illustrating the experiment were performed with
Mathematica from Wolfram Research. The Web site was made by use of WebMathematica. The code is
available upon request. It is to be noted that our use of Mathematica in the field of crystallography
extends much beyond educational purposes and that a full package has now been developed. A first
account of it (Ambert, Vanwinsberghe & Dumas 2006) will soon appear in the CCP4 Newsletters.

This educational project was presented at the GTBIO (‘Biological study group’ from the ‘Association
francaise de cristallographie’) meeting in Lyons, 22-25 June 2004 and at the 'teaching microsymposium'
of the IUCr in Florence, 23-31 August 2005.
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Crystallography Education and Training in the United States

Katherine A. Kantardjieff

Professor of Chemistry and Biochemistry, California State University Fullerton, USA

Member Consultant, IUCr Teaching Commission

Vice Chair, United States National Committee for Crystallography

WWW: http://faculty.fullerton.edu/kkantardjieff/ ; E-mail: kkantardjieff@exchange.fullerton.edu

Formalized Education and Training Policies

In 2001 and 2003, the United States National Committee for Crystallography (USNC/Cr) Education
Subcommittee conducted two web-based surveys. The first survey aimed to determine the content and
extent of coverage of crystallography in university curricula in the United States, while the second
solicited the views of the broader crystallographic community on the status of crystallography education
and training in the US, in both the physical and the life sciences. The results of these surveys suggested
that (perhaps due to rapid technological advances in the field of modern crystallography) there is a
declining number scientists who identify themselves as professional crystallographers, as well as a lack of
sufficient education and training in crystallography for individuals who wish to understand and/or use
crystallography in their hypothesis-driven research.

Recognizing the opportunity to communicate to the broader scientific community the research
opportunities afforded by crystallography as well as the value of crystallographic information, the
education committees of the American Crystallographic Association (ACA) and USNC/Cr organized a
crystallography education summit, which took place June 1-2, 2005 at the conclusion of the ACA
national meeting in Orlando FL. Financial support for this summit was provided by the USNC/Cr, the
ACA, the California State University Program for Education and Research in Biotechnology
(CSUPERB), and the National Science Foundation (NSF). A broad range of individuals, known for their
experience and contributions in crystallography education and training participated in this summit:
biologists, biochemists, chemists, geologists and physicists, all practicing crystallographers in their fields,
representing both academia and industry. The outcome of the summit has been a consensus policy
statement on crystallography education and training in the United States, which will be made available
later this year through the National Academies Press website
http://www.nationalacademies.org/publications/.

The ACA and the USNC/Cr intend that the document, which stands as the white paper on crystallography
education and training, provides guidelines to professional societies and academic departments for
crafting future crystallography curricula that adequately address the needs of the scientific community.
The education committees of the ACA and the USNC/Cr will provide guidance and support to interested
colleagues and policy makers who wish to put these recommendations into practice.

In creating the policy document, we have recognized that crystallography and molecular structure
awareness should begin in K-12 education as core components for implementing the established national
science standards for all students. Furthermore, there are many contexts in which crystallography can be
incorporated in undergraduate education with minimal disruption to current courses. Crystallography
should be included in curricula of all undergraduate programs in the physical and life sciences. We
believe that formal courses and research opportunities in crystallography should be available to senior
undergraduates, and that crystallography-rich courses should be available to all graduate students. In
addition, professional development beyond the graduate degree, such as provided by crystallography
certificate programs, short courses, summer schools and research opportunities, is a necessary aspect of
crystallography training. This is particularly important in novel subjects such as modulated structures and
time-resolved diffraction, where crystallography is increasingly being outsourced. Finally, the
recommendations and resulting changes must benefit the broader scientific community and not just the
community of professional crystallographers. Maintaining the vitality of crystallography is important to
university departments advancing science. Education and training today will contribute to the production
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of a successful workforce that will assist the nation to prosper in a world of global economic competition.
We hope that the scientific community will embrace this document, and that it will remind scientists of
the importance of crystallography in their research endeavors. In the following sections, we describe
some current crystallography education and training activities in the United States.

Sponsored Workshops, Short Courses and Workshops

In recent years, crystallography education and training in the US has come to rely on professional
development in the form of workshops, short courses and summer schools. The Continuing Education
Committee (CEC) of the ACA regularly approves applications for summer schools, as well as daylong
workshops on popular and specialty topics, or practical aspects of crystallography. The latter take place
immediately preceding the ACA annual meetings. Course content for summer schools and workshops is
reviewed by the CEC and subsequently disseminated through the ACA website. The ACA currently
sponsors two summer schools: one in macromolecular crystallography hosted by Andy Howard and run at
the Argonne National Laboratory (ANL) outside Chicago, IL; and the second in small molecule
crystallography hosted by Bryan Craven and Charles Lake and run at the Indiana University of
Pennsylvania. The USNC/Cr and ACA provide modest financial assistance to both summer schools to
support participants from Latin America.

For the past 16 years, the Cold Spring Harbor Laboratory (CSHL) has hosted a “crystallography boot
camp”, formally known as “X-ray Methods in Structural Biology”. This intense laboratory/computational
course is organized by William Furey (V.A. Medical Center, Pittsburgh), Gary Gilliland (Centocor, Inc),
Alexander McPherson (University of California Irvine) and James Pflugrath (Molecular Structure
Corporation) and supported with funds from the National Cancer Institute. Using a combined theoretical
and practical approach, with extensive hands-on experiments, the course teaches the fundamentals of
macromolecular crystallography, from basic diffraction theory through coordinate deposition. Applicants
are selected based upon the degree to which they would benefit from this training opportunity. Although
scholarship support is now primarily available only to US citizens and permanent residents due to
restrictions mandated by US federal funding agencies, the CSHL has made available some additional
funds specifically earmarked for qualified foreign students.

The major synchrotrons in the United States also regularly hold summer schools and workshops. The
Berkeley-Stanford Summer School on Synchrotron Radiation, organized by David Atwood and Anders
Nilsson, is a weeklong residential program providing a comprehensive overview of the synchrotron
radiation process, requisite technologies, and a broad range of scientific applications. Visits to both the
Stanford Synchrotron Radiation Laboratory (SSRL) and the Advanced Light Source at Lawrence
Berkeley National Laboratory (LBNL) are included. The summer school is limited to graduate students,
with a preference for those pursuing doctoral research in a physical science where synchrotron radiation is
expected to play a significant role in their work. This summer school is sponsored by UC Berkeley,
LBNL, SSRL, and the Department of Business Technology, UC Berkeley Extension.

SSRL hosts an annual Structural Molecular Biology Summer School, which focuses on small angle X-ray
scattering, X-ray absorption spectroscopy, macromolecular crystallography, and the application of these
techniques to biological problems. This program, organized by Serena DeBeer George and Clyde Smith,
is supported by a National Center for Research Resources (NCRR) grant from the National Institutes of
Health. Additional funding, through corporate sponsorship, has come from Agouron Pharmaceuticals,
Compaq Computer Corporation, Silicon Graphics, Area Detector Systems Corporation and the
Collaborative Computing Project Number 4.

The Biology Department and National Synchrotron Light Source (NSLS) at Brookhaven National
Laboratory (BNL) host “A Practical Course in Macromolecular X-ray Diffraction Measurement”, known
as “RapiData”. Organized by Robert Sweet, Dennis Robertson, Howard Robinson, Lonny Berman, Dieter
Schneider, Annie Héroux, Anand Saxena, and Alexei Soares, the course aims to provide participants with
experience in rapid data collection and structure solution at the NSLS. RapiData is not a complete course
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in crystallography; students are expected to have some fundamental knowledge of the field. This course is
sponsored by a grant from the National Institute of Health NCRR and in part by support from the
Department of Energy Office of Biological and Environmental Research. Additional financial support has
come from the IUCr and USNC/Cr (to support Latin American scientists), Brookhaven Science
Associates, Area Detector Systems Corp, Hoffmann - La Roche, Merck, Bruker AXS, Bristol-Myers
Squibb, Molecular Structure Corp., and Hampton Research Corp.

The National Institute of Standards and Technology (NIST)/NSF Center for High Resolution Neutron
Scattering (CHRNS) holds a week long course on neutron scattering each summer. These courses are
aimed at potential new users of the neutron instruments at the NIST Center for Neutron Research
(NCNR) and emphasize hands-on training at the instruments where participants carry out experiments and
analyze data. In alternating years, the school focuses either on neutron spectroscopy or on small angle
scattering and reflectometry. Some financial support is available for university students and postdocs to
attend these summer schools. This support is provided jointly by the NCNR and the National Science
Foundation through CHRNS. Some course materials from past summer schools are available for
download from the CHRNS website.

In addition to the ACA macromolecular crystallography summer school, ANL also hosts the “National
School on Neutron and X-ray Scattering”. Organized by Raymond Osborn and Dean Haeffner, the
purpose of this summer school is to educate graduate students on the utilization of major neutron and X-
ray facilities. Lectures include basic tutorials on the principles of scattering theory and the characteristics
of the sources, as well as seminars on the application of scattering methods to a variety of scientific
subjects. Students conduct four short experiments at Argonne's Advanced Photon Source and Intense
Pulsed Neutron Source to provide hands-on experience for using neutron and synchrotron sources. The
school is supported by the US Department of Energy, Office of Science, and the Office of Basic Energy
Sciences.

The International Centre for Diffraction Data runs two X-ray powder diffraction clinics each June. The
ICDD X-ray Clinics are a continuation of the SUNY Clinics, which were held at the State University of
New York at Albany for 25 years. The clinic is presented in two separate week-long sessions, each of
which stands alone as a complete course. Session I, Fundamentals of X-ray Powder Diffraction, directed
to both relative newcomers in the field and to more experienced users wishing to broaden their
understanding of fundamental concepts and established procedures, emphasizes the acquisition of reliable
experimental data and qualitative phase identification using manual search techniques. Session II,
Advanced Methods in X-ray Powder Diffraction, is designed for the experienced user and focuses on
computer-based methods of qualitative and quantitative phase analysis. New this year (September) will be
a “Rietveld and Indexing Workshop” at ICDD.

In 1951, the University of Denver held perhaps the world’s first one-day symposium on the application of
X-rays to the study of materials and the importance of X-rays in research. Today, the Denver X-ray
Conference (DXC) is the world’s largest X-ray conference, also sponsored by the ICDD. Held each
August in Denver, Colorado, the DXC still provides a unique mixture of sessions on training, education,
and applications, as well as papers containing details about state-of-the-art techniques and future
developments in X-ray fluorescence and X-ray diffraction techniques for the study of materials. Another
important part of the meeting is the presence of leading manufacturers of X-ray equipment who exhibit
their most recent equipment and have their technical people available to offer their suggestions on how
one might use their equipment to solve problems.

Finally, for the professional development of faculty teaching primarily undergraduates, there is the Center
for Workshops in the Chemical Sciences (CWCS), a National Science Foundation Division of
Undergraduate Education Course, Curriculum, and Laboratory Improvement sponsored initiative. CWCS,
headed by s Jerry Smith (Georgia State University), David Collard (Georgia Institute of Technology),
Emelita Breyer (Georgia State University) and Lawrence Kaplan (Williams College), is a 12-institution
consortium that provides workshops for faculty at eligible US institutions including 2- and 4-year
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colleges and universities. Individuals, including post-docs and graduate students who plan to embark on
a college teaching career, and conservators, forensic, biomedical and public health scientists with
significant educational responsibilities, are also eligible. California State University Fullerton’s Keck
Center for Molecular Structure, directed by myself, hosts a variety of biennial workshops, including
‘Modern Biomoleular Crystallography’, and ‘Crystallography for Chemists’. Additional financial support
has come from Bruker-AXS, Oxford Diffraction Systems, Rigaku MSC, Hampton Research Corp.,
Molecular Dimensions, and Nextal Biotechnologies/Qiagen.

Graduate Programs

What we can conclude from the surveys taken in 2001 and 2003 is that the majority of formal courses in
crystallography at the graduate level in the US are offered in chemistry departments (Figure 1), while the
majority of crystallography-related abstracts submitted to national scientific meetings are usually in
structural biology. Graduate students in biochemistry and molecular biology in the US infrequently take a
formal course in crystallography at university, and they are often trained by other graduate students, post-
docs, scientists at synchrotron beamlines, or through professional development courses. Furthermore,
geologists have reported that because the emphasis in geological sciences has shifted heavily towards
ecology and the environment, coverage of crystallography has been greatly reduced or eliminated from
the curriculum.

With the migration of academic crystallography from a research specialty to a technique employed by a
wide community of users, few university departments in the United States hire faculty capable of teaching
crystallography, and representation of crystallography in university curricula has diminished markedly
over the last decade. This has led to an increasing reliance on other, non-curricular resources (such as
web pages) which allow crystallography to be self-taught. While web-based tutorials are often well-
constructed and can provide an extremely valuable resource to the broader scientific community, such
tutorials can not take the place of practical experience, nor do they transmit the fascination and
excitement in the field that will interest a future generation of professional crystallographers. We hope
that our policy document, endorsed by the USNC/Cr and ACA, will develop in scientists in these fields a
renewed appreciation of the importance of crystallography in their research endeavors and help students
recognize the broader applicability of their skills.

Preliminary Survey of Crystallography Course Offerings

Graduate Undergraduate
Biochemistry
16%

Undergraduate
Geology

Graduate Geology 20,

A%

Undergraduate
— Biochemistry
4%

Graduate Chemistry
56%

USNC/Cr 2001

Fig. 1: Distribution of Crystallography Course Offerings in United States Colleges and Universities. The
majority of course offerings, both graduate and undergraduate, occur in chemistry programs, while the
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majority of abstracts submitted to national scientific meetings are in structural biology. Reproduced with
cainn?
permission®.

Undergraduate Institutions

Because X-ray diffraction instrumentation is not considered a facilities requirement for university
chemistry departments to receive undergraduate professional education certification by the American
Chemical Society (ACS), crystallography has practically disappeared from the undergraduate chemistry
curriculum in the United States. The subject where the majority of our undergraduate students will likely
encounter crystallography, if they do at all, is physical chemistry. Yet, an informal survey of physical
chemistry textbooks published in the last decade reveals that while ~50% mention crystallography,
coverage of crystallography has been severely reduced or eliminated from physical chemistry texts
published after 2000. Moreover, experimental techniques, when described, involve film-based precession
cameras and not the modern era CCD area detectors. We are encouraged, however, that many of the latest
first year, general chemistry textbooks devote 1-3 pages to X-ray diffraction, witih at least one giving
attention to X-ray diffraction as a ‘major technique’ alongside infrared spectroscopy, UV/Vis
spectroscopy, mass spectrometry and nuclear magnetic resonance.

In physics, although the undergraduate curriculum is rather homogeneous in the US, and general
diffraction theory is covered, the physics community (unlike chemistry and engineering) has no formal
certification or accrediting process for undergraduate programs. The National Association of State Boards
of Geology (ASBOG) offers baccalaureate geology students the opportunity to pass certification exams,
in which crystal systems and symmetry are considered as part of the knowledge base in mineralogy and
petrology. However, the undergraduate geology curriculum is becoming a bit more heterogeneous as
departments move away from traditional topics, and there is no formal certification or accrediting process
for undergraduate programs. Although the American Society for Biochemistry and Molecular Biology
(ASBMB) makes general recommendations about curricula that include physical biochemistry/molecular
modeling/biomolecule structure/function, ASBMB also does not have a formal certification or accrediting
process for undergraduate programs.

Predominantly undergraduate institutions (PUIs), despite their sometimes relatively small science
programs, excel at attracting good students to science and encouraging them to enter graduate programs.
Indeed, PUIs have a leading role in undergraduate education in the United States by providing the
majority of baccalaureate graduates who go on to do a PhD in the sciences. Along with community
colleges (CCs), they provide the primary pathway for recruiting the next generation of professional
scientists in general, and crystallographers specifically, into professional careers. Although undergraduate
research is recognized as an effective strategy for teaching and refining skills, faculty at PUIs, who
generally carry heavier teaching loads than their counterparts at PhD-granting universities, are often
challenged to conduct and maintain productive contemporary research programs by constraints on time
and resources. It is to the benefit of the broader scientific community that PUI faculty members in the
United States are supported in their efforts to integrate crystallographic topics into their teaching, and
crystallographic methods into their research. Moreover, it is in the personal best interests of professional
crystallographers and their institutions, funding agencies, and the nation to ensure that adequate support is
in place to fully integrate crystallography into undergraduate teaching and research.

In 2005, an X-ray diffraction consortium of predominantly undergraduate institutions was launched - The
Science Teaching and Research Brings Undergraduate Research Strengths Through Technology — Cyber
Diffraction Consortium — STaARBURSTT-CDC (Figure 2). The consortium, headed by Allen Hunter at
Youngstown State University, was established from five pre-existing regional core X-ray diffraction
instrumentation facilities headed by Hunter at YSU, myself at Cal State Fullerton, Gregory Ferrence at
Ilinois State University Normal, Guy Crundwell at Central Connecticut State University, and Marcus

? Kantardjieff, K.A. 2001, CMolS: an X-ray collaboratory for research, education and training. In Program Abstracts, Ameri-
can Crystallographic Association National Meeting, Los Angeles, CA.
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Bond at Southeast Missouri State University. Instrumentation at the core nodal institutions includes an
extensive array of the latest instruments, usually available for both remote and local operation at
relatively low cost, and a wide range of areas of faculty expertise. STaRBURSTT-CDC aims to
systematically and significantly changing the research and educational cultures at PUIs, with the value
added benefits flowing from this change to our “customers” (the nation's major research universities and
R&D and production organizations) through the currency of its students. Consortium members are PUISs,
CCs, Historically Black Colleges and Universities (HBCUSs), Hispanic Serving Institutions (His), and
Tribal Colleges (TCs). STaRBURSTT also collaborates closely with a range of affiliate members, such
as PhD granting universities, government labs, non-profit organizations, and companies.

Fig. 2: The Science Teaching and Research Brings Undergraduate Strengths Through Technology —
CyberDiffraction Consortium. Primary Nodes, indicated by the larger red stars in the map, provide
substantial local and remote access to external users of their broad range of modern instrumentation.
Secondary Nodes, indicated by the yellow stars in the map, provide local test sites and/or local and
remote access for external users to their more limited range of modern instrumentation. Blue stars in the
map denote community college members. (Figure design by Katherine Kantardjieff.)

K-12 Education

Friedrich Frobel, a crystallographer and the inventor of kindergarten, believed that the geometrically
shaped surface planes of crystals demonstrated that fixed laws govern the natural world. Frobel believed
that these same laws guide the development of the child, the adult, and even whole societies, and
therefore that the logic of creation could be illumined through the guided manipulation of forms. In
grades K-12, United States National Science Education Content Standards expect science curricula to
develop students’ understanding and abilities aligned with the concepts and processes associated with a)
systems, order and organization; b) evidence, models and explanation; ¢) form and function. Moreover,
high school is a significant period in the education of students, because this is when they are exposed to
science at a more significant level, and when they make their preliminary career choices. Well-qualified
teachers must be able to present contemporary scientific topics in a way that attracts talented and
enthusiastic young people to science, whether contributing to the development of scientifically literate
citizens or science specialists in the future work force.

K-12 teachers should be given opportunities for continuing education in crystallography to give them
knowledge and provide them with learning units, tools and modern examples to incorporate into their
curricula, so that they are comfortable teaching the science. Completion of such professional development
and innovative application of the knowledge gained should be rewarded through certification and in-
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service credit. One such program for high school teachers exists at the University of California Irvine,
where Ken Janda heads a team of chemists, geologists and engineers working together on a National
Science Foundation Collaborative Research in Chemistry (CRC) Project to advance the state of
knowledge of clathrate hydrates. The CRC Project also incorporates a community outreach program
involving high school teachers, which includes a week-long summer workshop in crystallography held
jointly between UCI and Cal State Fullerton.

Crystallography ‘awareness’ should begin in K-12 education. Students are easily enthused or put off by
subjects in pre- and high school, often making life-altering decisions about future study and career goals.
Natural curiosity and excitement about the scientific world must be encouraged and -cultivated.
Crystallography, which derives molecular structure and its implications in such fields as drug discovery
and materials design, is a highly interdisciplinary and visually stimulating science (Figure 3), capable of
providing cues for discussions of symmetry, chemical structure, biochemical processes and molecular
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Fig. 3: The ‘Waves’ of Crystallography. Crystallography is a highly interdisciplinary science, bordering
on and integrating naturally with fields such as earth science, physics, chemistry, biology, biotechnology
and mathematics. (Figure design by Andy Howard.)
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Concluding Remarks

Substantial advancements in crystallographic techniques made over the past 25 years allow individuals
with quite diverse background and preparation interested in a specific structural problem to use
crystallography as a tool in their problem-oriented, hypothesis-driven research. These same technical
advances now enable users with little or no training (or deeper understanding) to often (but not always)
produce quality results. The practitioner in crystallography today and perhaps even more in the future is
the structural biologist, structural chemist or material scientist. He/she must be able to skillfully analyze a
structure in its chemical or biological context, material preparation and synthetic methods. Furthermore,
he/she must be in command of a solid repertoire of techniques aimed at determining more and more
challenging structures.

Paul Ewald described our science in Acta Crystallographica’: “Crystallography borders, naturally, on
pure physics, chemistry, biology, mineralogy, technology and also on mathematics, but is distinguished
by being concerned with the methods and results of investigating the arrangement of atoms in matter,
particularly when that arrangement has regular features.” This statement is as true today as it was more
than 55 years ago. Modern crystallography provides enabling technology, methodology and information,
and the bounty of knowledge gained from analysis of its structures is a key underpinning of modern

*Acta Crystallographica, 1948 1,2
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science and technology. There is common ground in the fundamental physics of crystallography shared
by scientists in the life sciences and by those in the physical sciences, but the objectives of each
community in applying crystallography to their particular research problems are not necessarily the same.
Life scientists are generally interested in overcoming the modern-day bottlenecks of crystallization and
protein production, and in learning the basic requirements to use crystallographic techniques, namely data
collection and executing various software applications that determine molecular structures in a nearly
automated fashion. Physical scientists, particularly those from the fields of inorganic chemistry and
materials science, are often concerned about fundamental symmetry, space groups and unit cells, which
give rise to the material and reactive properties of the crystalline state. These topics naturally require
greater depth of understanding of the underlying crystallographic principles.

The policy document summarizing the crystallography education and training policies endorsed by the
ACA and the USNC/Cr makes recommendations for a comprehensive re-evaluation of crystallography
education. It suggests ways to develop in the broader scientific community an appreciation for the value
of crystallographic information, and it promotes ways in which the visual, aesthetic and quantitative
nature of crystallography can provide an excellent path to introduce science and scientific methods to the
general population. We hope that the policy document will facilitate further discussion and exchange of
ideas in the national and international crystallographic communities, to share what we know, have
developed and will develop, as well as to communicate “best practices” from around the world.
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Pakistan came into being in 1947. The country at that time had only one university, the University of
Punjab, Lahore. However, there were a few affiliated colleges enrolling the students for a Bachelors’
degree and, in some of the disciplines, for a Masters’ degree. The former required minimum two years of
registration following the higher secondary school certification, while the latter required another two
years of registration following the successful completion of the Bachelors’ degree program. The
admission to the University of Punjab was based on merit and there were a limited number of seats
available in every discipline that the University offered. The entry criteria for most of the disciplines was
successful completion of the Bachelors’ degree, while a few disciplines also registered the students for a
Bachelors’ degree program which could be subsequently followed by the registration for a Masters’
degree if the student both wished and qualified the required merit. The University of Punjab was founded
in 1982. The University had a very rich tradition of scholarly learning in many disciplines of moral
philosophy and natural philosophy, including Chemistry, Physics and life sciences. After the World War
I, India was marred by widespread political disturbances following the independence movement. Even
before the creation of Pakistan in 1947, most of the highly qualified foreign staff had already left the
University for their homeland in U.K. The creation of Pakistan also deprived the University of a part of
highly competent native staff who belonged to the other side of the border. The country also needed
more universities since the students in Pakistan no longer had the access to the institutes of higher
learning in other parts of united India. The Government of Pakistan instituted a few new universities
early in 1950s including two universities in the Sindh province, University of Karachi, and University of
Jam Shoro; one in the province called North West Frontier and/or Serhad (national language word),
University of Peshawar; and once in the Baluchistan province, University of Baluchistan. All universities
were having affiliated and constituent colleges. However, majority of the colleges offering B.Sc. in the
disciplines of natural philosophy including Chemistry, Physics and other life sciences, and mathematics
were affiliated with the University of Punjab. As mentioned earlier, The B.Sc. program was for two full
academic years after 12 years of schooling and successful completion of higher secondary school
certificate (equivalent to British A level)." The students were required to major in at least three subjects
opted from amongst the natural sciences and pure sciences, including mathematics and statistics. The
examinations used to be held twice a year. However, once enrolled for the degree, a student was first to
appear in the examination after the completion of two full academic years. If unsuccessful in the first
attempt, a student was allowed to avail another four chances for qualifying the examination. Initially,
each successive chance required whole evaluation. Later, the part evaluation was also allowed, as not
many students had the ability to get through the examination if taken otherwise.

Crystallography was included in the required course content of the subject of Chemistry and a part of it
was also added in the subject of Physics. Therefore, a student opting to major in Chemistry, Physics and
Mathematics had both theoretical perspectives and the analytical ability to learn the fundamentals of the
subject, such as crystal systems, Weiss indices, Miller indices, Bragge’s Law, X-ray diffraction, Powder
method, single crystal method, general indexing and many other basic theories and laws.

In the 1960s, the syllabi were revised at all levels and modern atomic and molecular knowledge was
added in the B.Sc. course requirement. Similarly, Masters’ courses in the disciplines of Chemistry,
Physics, life sciences and pure sciences, mathematics and statistics, were revised. The most significant
addition to the B.Sc. course content was perhaps the modern concepts about symmetry. The total number

* This system is being phased out now to establish the equivalence with the internationally reputable schools of higher learn-
ing. The proposed program requires four years of enrollment for the award of Bachelors’ degree. Many of the private sector
universities were already practicing it. Since last academic year, the public sector universities and the affiliated colleges
are also required under the directive from the Higher Education Commission (HEC) to gradually phase into the standard-
ized four-year Bachelors’ degree program.


mailto:zfk2000@mul.paknet.com.pk

Page 20

of contact hours for lectures on crystallography ranged from 20 to 30. Subsequently, however, the
introduction of the semester system in some of the universities reduced the number of contact hours for
lectures on crystallography. Moreover, another constraint, which appeared with time, was the
unavailability of required number of specialists in solid state or crystallography to teach the subject across
the board in all colleges and universities of the country. Finally, due to the wide option given between
the questions in the exam paper, the students, while preparing for exam, either did not study
crystallography in depth and detail or simply skipped that part of the course.

In the realm of higher education, another important part of the 1960s education policy was the overseas
training of the university teachers. The government sponsored a large number of university teachers who
got registered for a Ph.D. degree program, mostly in the institutes of higher learning in the industrially
advanced countries. An overwhelming majority of the Ph.D. scholars opted for the universities in
Western Europe, mainly U.K. and North America including both US and Canada. Unfortunately, the
scheme was not devised in a manner ensuring coherence and need-based approach. Resultantly, a large
number of scholars ended up doing Ph.D. in the offshoots of the disciplines, which did not require
analytical rigor and ensured the completion of the degree with relative ease. In the discipline of
Chemistry, the Ph.D. scholars mostly specialized in Organic, Bio and Inorganic Chemistry. Very few
opted for crystallography, and even the Physical Chemistry. The very high cost and consequence of a
scheme, which did not follow a need, based approach first started to be surface in the early 1970s. It was
realized that the universities allover the country were not having the required expertise for covering the
entire span of specialization topics included in the course requirement for a Masters’ degree in Chemistry.
Many universities did not include crystallography in the course requirement of any of the disciplines
and/or the offshoots of the disciplines. There were one or two specialists of Physical Chemistry who
included crystallography in the course requirement of M.Sc. degree in Chemistry. It was a part of
optional specialization in Physical Chemistry in the 2™ year of the M.Sc. Program. Following topics
were included in the required course content:

Basic concepts;

Crystal systems;

Weiss and Miller indices;

Single crystal and powder methods of X-ray diffraction;
Indexing;

Structure factor;

Chemical applications of Group theory;

Point groups;

Character tables;

General introduction to space groups.

In the 1970s, the overall educational standard at B.Sc. and M.Sc. level improved in Pakistan, as many
overseas scholars returned home with M. Sc., M. Phil and Ph.D. degrees from European and North
American universities. They started teaching in universities and colleges allover the country. More
public sector universities were also opened, many in smaller cities. Revised syllabi and courses too were
introduced. The medium of instruction and expression was English for both B.Sc. and M.Sc. degree
programs. The examination system, however, was still biannual in most of the universities for evaluating
both B.Sc. and M.Sc. degree candidates.

Crystallography was a compulsory part of the B.Sc. course. The colleges offering B.Sc. degree programs
were affiliated to different universities and were therefore required to follow the course as per
requirement of the university allowing affiliation. An official Text Book Board was established in
Lahore, which was responsible to recommend textbooks not only for primary, secondary and higher
secondary schooling, but also for learning at the B.Sc. level. Some very good B.Sc. level text books
were written by Pakistani authors, mainly highly qualified university teachers, in various disciplines of
sciences including Chemistry, Physics and other life sciences. However, foreign books written by
American and European authors were also available in the market and widely in use allover the
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institutions of higher learning. More significantly, each university was having its independent Board of
Studies, which exercised the power to update/revise the syllabi.

In the late 1970s, some of the universities opted semester system of examination for M.Sc. degree
programs and introduced some variation in the courses, which they offered under the new system of
evaluation. The syllabi were designed keeping in view the availability of the teaching staff, rather than
the required course contents. At the B.Sc. level on the other hand, the unavailability of the specialist
teachers was already making it difficult for the students to thoroughly follow crystallography. As
mentioned earlier, the required level of instructions needed 20 to 30 contact hours of lecturing by a
specialist on the topic. The crystallography specialist at B.Sc. level was supposed to be a teacher having a
sound knowledge of three subjects, Chemistry, Physics and Mathematics. For teaching at the M.Sc. level,
a specialist necessarily required a Ph.D. either in Physical Chemistry or Chemical Physics.
Unfortunately, most of the Ph.D. Chemistry teachers in the universities did not possess required analytical
skills, as they did not have sound knowledge of Mathematics. The syllabi of Chemistry at M.Sc. level
were therefore slightly unbalanced and did not favor the effective teaching of crystallography. The Board
of Studies mainly consisted of the teaching staff of the concerned universities and the members favored
and approved those topics or course contents, which they found easy to teach. Unfortunately, most of the
teachers in Pakistan having a Ph.D. degree in Chemistry do not have the required level of expertise in
Mathematics. Resultantly, crystallography was not made compulsory in the first year of M.Sc.
Chemistry. In the second year, students were required to opt one of the following specializations:

Physical Chemistry
Organic Chemistry
Inorganic Chemistry
Applied Chemistry
Polymer Chemistry
Bio Chemistry

An optional research project was also part of the specialization. Those opting for research were required
to do the experimental work and write the thesis duly supervised by the assigned research supervisor.
Some of the universities were having separate departments of Biochemistry.

In the 1980s, the examination system was revised as a part of the effort to improve the educational
standard. The students were required to take the separate exam for each of the required two years of
M.Sc. duration. As mentioned in the foregoing, the opportunity to learn crystallography was offered in
the 2™ year only to those students who opted to specialize in Physical Chemistry. The course content on
the topic required was 25 to 30 contact hours of lecturing in the class. The major topics covered were
crystal system, Basic laws, Weiss and Miller indices, Experimental detail of Powder and single crystal
method along with illustrations to simple crystal systems (cubic etc). Structural factor, Fourier synthesis,
symmetry, Point group, space group and general application of crystallography.

It is important to mention here that though the M.Sc. Physics course included Solid State, it did not cover
the main crystallography since the contents mostly focused on Bragg’s law and some mathematical
equations. Even symmetry and Group theory were ignored. Probably, due to the ignorance of chemical
properties of compounds, the teachers were unable to discuss single crystal and powder pattern of organic
compounds and, it appears, that they only emphasized the cubic system. The upshot is that it was the
teaching of Physical Chemistry in Pakistan, which offered most of the crystallographic knowledge.

X-ray diffractometer was never widely accessible in Pakistan. Only few of the universities purchased the
instruments with Powder method facilities. Again, these instruments were used mostly for cubic systems,
only to illustrate the Powder method. Moreover, the teaching aids were not technologically updated in
many of public sector universities. Even in the early 1990s, the teachers were mostly provided black
board and white chalk for lecturing in the classroom. Some of the teachers also failed to keep pace with
the required level of competence and came to the class with lecture notes in the hand which they either
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read from the sheet verbally or copied the contents on the board. Sometimes, the teaching quality was
compromised to the extent that the students were given the copies of the lecture notes. Though the
universities were having well equipped libraries containing up-to-date titles, majority of the students
simply relied on the lecture notes handed by the teachers and/or inherited from the senior students.

One very positive development in the 1990s, however, was the beginning of the era of the usage of
computer technology in the educational institutions of Pakistan. Indeed, since the second half of the
1990s, there has been a drastic change in the availability and accessibility of technologically up-to-date
teaching aids in the universities, especially after the advent of Internet in the country, which was
accompanied by a remarkable increase in the usage of personal computer (PC), both at the household and
institutional level. Higher Education Commission (HEC) of Pakistan arranged a seven days workshop on
Computational Chemistry and they invited teachers from all public sector universities of the country. It
was decided to work on computational methods in future by accessing the updated software and sharing it
between all universities. That was the major turning point in higher education in Pakistan. Many
universities remarkably increased the usage of computer technology as a significant part of the teaching
aids. Students were provided access to the updated software, which they could independently use, asked
to use in the laboratories. The wide usage of computer technology provided significant boost to
crystallographic illustrations, especially to the understanding of the fundamentals. In 1997, Internet
arrived in Pakistan and soon the network spread to all major cities. The interested and active students and
teachers started extensive use of Internet. Many software were freely available online. The real help
came form CCP14, the Software distributed freely in the form of CDs. These CDs were a great source of
learning both for the teachers and the students who now got clear concept of Space group, which was
difficult to illustrate on a Board. Crystallographic calculations were demonstrated by PCs, as it was the
best way to do that and the students even developed the ability to independently run the Software while
working in the home. The Internet also provided access to a depot of online books and other related
literature. Since the turn of the 21* century, syllabi have been re-arranged and, as mentioned above, the
universities and colleges are required to phase into internationally compatible four-year Bachelors’ degree
program. Moreover, M. Phil. degree programs have also been introduced in many public sector
universities. Although the crystallography course contents in the new four year B.Sc. Chemistry are
similar to earlier two-year B.Sc. degree, teaching standard is much higher with the help of Internet and
CCP14 Software. For M. Phil in Physical Chemistry, the Crystallographic syllabus includes the
following topics:

Basic concepts;

Basic laws;

Weiss and Millar indices;

Powder and Single crystal methods;
Indexing;

Fourier synthesis;

Structure factor;

Introduction to various software;
Group Theory;

Point groups;

Space groups;

Software used in structure elucidation.

The above course contents require about 25 to 30 contact hours of class lectures during the first year of
enrollment for the M. Phil. degree program, while the second year of the enrolled student is entirely
devoted to individual research project carried out under the guidance of a supervisor appointed by the
Board of Studies. It may be concluded that the Information Technology (IT) revolution has helped
improve the quality of crystallography teaching, particularly in the new century. The HEC has provided
free Internet access to students and teachers in all public sector universities. Learning and teaching has
become both easier and challenging, as ready access to latest knowledge and analytical techniques,
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incorporated in the updated Software, is making both students and teachers a lot more ambitious than ever
before.

That said, there is also a downside of the IT revolution: the strengthening of already victorious market
and commercialization of education. Following the neoliberalist ideology also in the realm of education,
a number of private universities have cropped up in Pakistan. These universities are mainly offering IT
and management diplomas / degrees. Given the market-oriented culture of the private universities, the
cost of education is very high compared to their counterpart in the public sector. In a milieu where there
is a general dearth of specialists and expertise, the private universities are offering very high pay packages
to attract the quality teachers. Resultantly, many of the teachers in the public sector universities have
joined the rat race and universities are facing serious vacuum as, along with joining the private sector, a
large number of highly qualified faculty have also been sucked by the global market. Presently, a person
of high caliber requires strong conviction for staying in the public sector universities, which, of course,
are supposed to chaperon the process of progressive social transformation by helping enhance both
technological development and sociological evolution. Unfortunately, none of the private sector
universities are offering degrees in natural sciences, as the market does not presently favor these subjects.
However, market failures have been rampant in the past and the contemporary times do not dole out any
guarantee of the success of the market either. The upshot is that the market failure in the production of
intangibles may have a lot more severe and far-reaching effects for an underdeveloped society like
Pakistan, than it may be the case for tangible products.

Finally, the future of crystallography teaching is uncertain in Pakistan, as the public sector universities of
the country are fast loosing to the local and global market the Ph.D. teachers, having degrees from
internationally reputed schools. Furthermore, the market is not promoting the natural sciences and the
interventions are not delivering the desired results either.
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A Guided Tour in Fourier Space

Fokke Tuinstra
Laboratory of Applied Physics, Delft University of Technology, Delft, The Netherlands, E-mail:
f.tuinstra@tudelft.nl

1. Introductory

The tour is intended for those that would like to get familiar with the concept of ‘reciprocal space’ and its
relationship with the familiar ‘direct space’. Since the main part of understanding is merely getting
familiar, we will not pursue mathematical rigor. Especially those that have little or no experience with
Fourier Space are invited for the round trip. For those that are well prepared and/or have a solid
mathematical background it possibly can serve as an overview.

2. Fourier Transforms

The definition of the Fourier transformation (or Transform), we will use is:
F(S)= | f(r)exp(2zir.S)dr.

It transfers a function f(r) from the direct vector space, where r is the position vector and dr is a volume
element at position I, into a function F(S). F(S) is a function in the reciprocal or Fourier space, where the
positions are determined by a vector S. The integration extends over the whole space. Both functions, f(r)
and F(S), may generally be complex functions, i.e. they can be written as the sum of a real part and an
imaginary part or as a real modulus and argument or phase factor i.e. f(r) = |f(r)|.exp {i.(p(r)}, where |f(r)|
is the modulus and ¢ is the argument (or phase). Beware of the fact that if f(r) is a real function does by
no means imply that the transform F(S) is real.

The position vector ' is measured in meters (or A). Since an exponent is dimensionless, S is expressed in
units m™' (or A™). The Fourier Transform will, as an operation, be denoted by the symbol FT":

FT'[f(r)] = F(S).

The transformation which transfers the function F(S) from reciprocal space back into the function f(r) in
direct space is called the Inverse Fourier Transform (FT") given by:

f(r)= | F(S)exp(-2xir.S)dS.

No information is lost in the transformations, neither in FT" nor in FT". A presentation of the function
F(S) in reciprocal space is equally valuable as the presentation of the function f(r) in direct space.

The here presented formulations of FT* and FT™ are generally used in structural science. All structural

data published under the authority of the IUCr (International Tables and Acta Cryst.), are only consistent
with the here given definition.

3. Why Fourier Transforms are so useful in structural science

As shown in Box 1, the scattering amplitude A(S) of the radiation scattered by an object is, within certain
assumptions, given by the transform FT [f(r)]:

A(S)=] p(r)exp2xir.S)dr.
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S is called the scattering vector, p(r) is the ‘scattering power’ at position r. The intensity I(S) is as usual
given by A(S)x A*(S).

The scattering power is, dependent on the type of radiation used, X-rays, neutrons or electrons, directly
related to the structure of the sample.

So in structure analysis there is a close connection between the experiment and the theory of Fourier
Transformations.

The intensity data are collected as a function of S. The main problem is how to find the function p(r) in
the direct space from the measured intensities in reciprocal space.

Box 1. Scattering of radiation by an object.

I'So O

O is the origin; at 0 the phase is taken to be zero.
The parallel incident beam has direction S, and the scattered beam direction S;
ISo| = |S|= 1/A. dr is an infinitesimal volume element at position r; it is part of a scattering
object. Its contribution to the scattered radiation is:
p(r)exp2zir.(s—s,)dr = p(r)exp2zir.Sdr,
where p(r) is called the scattering power and S = S-S, the scattering vector.

The total scattering is the sum or rather the integral of all contributions.
This gives for the scattering amplitude:

A(S)= J p(r)exp2zir.Sdr.

The related intensity I(S) is as usual the square of A(S), or rather the product of it
with its complex conjugate:

I(S)=A(S)x A*(S).
The formula holds only when the scattered beam is not diffracted again (multiple
scattering) and the scattering is elastic and kinematical.
For any direction of S, with respect to the object, the maximum value |S| can attain is
reached if s = -S,, then |S] is 2/A. In the reciprocal space information can therefore only
be obtained within a sphere with radius 2/A centered at the origin. This sphere is called
the Limiting Sphere.
The concepts of this Box apply to optics in general. The resolving power of an optical
instrument for instance is limited because of the Limiting Sphere for that case.
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4. Pair wise reciprocal functions

General rules about Fourier transformations of functions are:
What is 'skinny' in one space is ‘wide’ in the other and vise versa.
Sharp edges in one space result in wiggles in the other.

This will be illustrated by the following three examples in which we will for the time being stick to one
dimension. The three dimensional cases follow by analogy.

1). The 'Slit Function’

It is zero everywhere except between -a/2 and + a/2 where it has de constant value 1/a. The FT" is :

1 +2 sin zaX
F(X)==1 2exp(2zrix.X)dx=
) aj—; p( ) raX

b

which is called a Sinc function.
The Slit function f(x) is displayed in figure 1 together with its FT", the Sinc function F(X).

The 'Slit function' and the 'Sinc function' form a pair of reciprocal functions.

- wW=a -
1/a
f(x)
-a/2 +a/2
»
X
Slit

W=a'

1

F(X)
4 N\
»

2a X

Sinc

Figure 1
The Slit function and the Sinc function form a reciprocal pair .

The sharp edges at +a/2 in the Slit generate the wiggles in the Sinc.

The width w of f(X ) is a, the width W of F(X ) can be taken to be 1/a (half of the base of the “triangular”
central maximum); their product w.W = 1.
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The narrower f(X), the wider F(X).
We have chosen the area of the Slit to be 1.
2). The Gaussian function
A one dimensional Gaussian is written as:
1 xzj
f(x)= expl —— |,
( ) e P( o2
then (with the aid of the standard integral j_+wexp(—xz)jx =r ) the FT" is found to be:
F(X)=exp {—7[2 a’ Xz}.

The transform of a Gaussian is another Gaussian.
The Gaussians f(x ) and F(X ) form a reciprocal pair of functions.

The width of a Gaussian is often defined as the width of a rectangle with the same area and the same
height as the Gaussian itself. See figure 2.

The product of the widths of both functions is constant. They are ‘reciprocal’ in the sense that if one
grows, the other one shrinks : w.W = 1.

f) P w=avr
X/ T F(X)/\Wzl

Figure 2.
A pair of reciprocal Gaussian functions.

Gaussians are exceptional in that they decay so smoothly that they produce no wiggles if Fourier
transformed.

3). The Dirac- 6—function
If we take either the Slit function or the Gaussian and make it narrower and narrower its area will always
be 1, even if we go to the limit a — 0. We then have a ‘function’ centered at x = 0, which has a width

zero, its height goes to infinity but its area, that is the integral, still is 1. This is called the o—function
denoted by the symbol d(X).

The d—function is formally defined as:

| “a0)dx=1;8(x)=0 it x=o.

Its properties are discussed in Box 2.

The FT" of the 5—function follows directly from the definitions:
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FO<)= 7 a(0).exp@rix.X) dx =1.
Similarly:
£0)= | 7 o(X).exp(-27iXx) dX =1.
The J—function is as narrow as can be, and so its Fourier Transform is as wide as can be.

The 6—function and the function ‘1(x)’, that has the value 1 everywhere, form a reciprocal pair of
functions.

The three examples were, for simplicity reasons, given in one dimension. They can easily be extended
into three dimensions.

The Slit function in three dimensions is called a "Box function": f(r) = f(X,y ,z) has the value 1/a.b.c for |x
| <a/2; |y | <b/2and |z | < c/2; outside the 'box’ f(X, Y, ) = 0.

The FT is:

sinzaX sinzbY sinzcZ
raX — zbY = zcZ

F(S)=F(X,Y,Z)=
A three dimensional Gaussian is a product of three 1-D Gaussians in the X, y and z direction, respectively.
A three dimensional §—function is 8(r) : j S(rydr =1 j f(r)s(r)dr =£(0);

its FT" is F(S) = 1.

The same properties hold of course if an FT  is applied to a F(S).
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Box 2. The &-function.

d(X), symbolic 3(x-a)

It mostly is defined by the property:
[ 8()dx=1:8(x)=0 if x=0.
&(X) is not a function in the usual sense: its width is naught while its height is infinite; its OcontentQ

nevertheless is 1. In the theory of Fourier Transforms it is a very useful concept.
The &-function can also be represented by:

5(0)= | “exp@rixX)dx
The most important property is illustrated by the equation:
| (%) 5(x) dx = £(0).
The contribution to the integral is everywhere zero except for X = 0, where &(X) is non zero.
Consequently:

| 76(x) 8(x ~a) dx = £(a).
The definition in three dimensions is
[ 7 srydr =1:5(r)=0if r 20.

In diffraction theory the delta function often is called the "peak function" for obvious reasons.

5. Types of functions

In the three examples the functions as well as their transforms are real rather than being complex. The
reason is that we chose f(r) to be both real and even (centro symmetric), that is f(r) = f(-r).

In the case that f(r) is real, the Fourier integral can be split in a sum of a real and an imaginary part using
the expression exp (i.¢ ) = cos¢ +1ising.

F(S)= | f(r)cos(2zr.S)dr +i.] f(r)sin2zr.S)dr.
Changing the sign of S does not affect the real part but changes the sign of the imaginary part:
F(-S)= | f(r)cos2zr.S)dr —i.| f(r)sin2zr.S)dr = F *(=S).

Thus if {(r) is a real function F(-S) =F*(S); F(S) is not necessarily real. A real F(S) does occur however,
if f(r) is real and additionally even. In that case the second integral vanishes because the sine function is
odd.

If on the other hand f(r) is a real and odd function 1.e. f(r)=—f(-r), the first integral will vanish, because
the cos function is even, which makes F(S) pure imaginary.

6. Multiplication and Convolution are conjugate operations

The Multiplication of two functions f(r) and g(r) results in a function m(r) which has at the position r
the value m(r) = f(r)x g(r).

The Convolution of two functions f and g is mathematically defined by :
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o(r)=1(r)*g(r)= | “1(r").g(r -r)dr.

This formulation does not directly appeal to ones imagination. Convolution of a function f(r) with another
function g(r) results generally in a smoothing or blurring of f(r), as the following example in one
dimension illustrates in figure 3.

fix")
0 —»X
a
<+
g(x-x)
0 —» X
X

¢(x) = f(x)* g(x)

Figure 3
The convolution procedure.
f(x") is averaged over the area with width a.

Take for g(x") a one dimensional Slit function, that is g is everywhere zero except for X' between -a/2 and
+a/2, where it has the value 1/a.

Now invert the function g with respect to 0 resulting in g(-x'), then translate it over a distance X, that is
changing the variable X' into (X'-X). Than we have obtained

g(X-x").
In the present case we don’t need to invert g, since the Slit function is even (symmetric).

Now, at the position x the function ¢ will have the value
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1 X+a/2 ,
()=~ 7 ey,
which is the average of f over a domain with 'width a' around the point where X' = X.

As figure 3 illustrates this is what we would call smoothing or blurring.

If, instead of the slit function, we take another symmetrical function which is substantially present only a
limited domain, like for instance a Gaussian, the averaging will be slightly different but the procedure is
essentially the same.

The blurring effect is also illustrated in an optical pin-hole camera, the so called ‘Camera Obscura’. The
image is convoluted with the area of the ‘pin’-hole. The smaller the hole the sharper (and unfortunately

weaker) the image; the larger the hole the more blurring.

And so in figure 3, the narrower the domain, i.e. the smaller a, the less blurring will occur. In the limit
where a — 0 the function g changes into the d-function (see Box 2.) and the convolution will reproduce
f(x) without any blurring.

In three dimensions:
f(r)=o(r)="£(r).
Convolution of f{r ) with a shifted 3-function &(r —a) results in the shifted function

f(r-a):

f(r)=o(r—a)="1(r —a).

The convolution operation itself has nothing to do with the Fourier transformation. It is just like the
multiplication an operation where two functions are involved, both defined in the same space.

Rule: Multiplication of functions in the direct space implies in reciprocal space a Convolution of their
transforms and vise versa.

The proof, which is straightforward, for the one dimensional case is:
FT*[f(x)* 2(x)]= J] f(x').g(x - X).exp@rix.X)dx'dx =
= J-.[ f(x").g(y)-exp2zi X (x'+y)}dx'dy =
= [ f(x).exp2zi x Xdx'.| g(y).exp2riy Xdy =F(X)x G(Y).
Multiplication and convolution form a pair of reciprocal operations:
FT" [m(r)] = C(S); FT" [¢(r)] = M(S),

where C(S) is the convolution and M(S) the multiplication in reciprocal space.
Summarizing:

Direct space fry | g m(r)="f(r)xg(r) c(r)=1(r)*g(r)
Rec. space F(S) | G(S) | C(S)=F(S)*G(S) M(S)=F(S)xG(S)
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7. The use of multiplication and convolution
1). The resolving power

As indicated in Box 1, complete knowledge of A(S) would offer a complete picture of p(r) in the direct
space by application of an FT". However, the function A(S) is only accessible to measurement within the
Limiting Sphere (L.S.). We are deprived of any information about A(S) for |S|> 2/A.

The question now is how this affects a reconstruction of p(r). In the most favorable situation we know
A(S) exactly within the limiting sphere but nothing about it outside. That is, the observed scattering
amplitude A'(S) is the ideal A(S) multiplied by a function T(S) which has the value 1 inside the L.S. and

which is zero outside it:

A'(S)=A(S)xT(S).
The FT of A'(S) thus is

p(r) = p(r)*t(r),
where t(r) is the FT of T(S).

T(S) is a ‘spherical Slit’ function and t(r) thus has spherical symmetry, a radius of the order of A /2 and
some wiggles.

The picture we at best get from p(r) is one that is blurred by t(r). So using radiation with a wave length of
1A in X-ray crystallography, will reveal the atomic positions, but for the finer details of for instance the
electron distribution a shorter wavelength is necessary.

In a real scattering experiment additional instrumental limitations of the area in reciprocal space, where
data can be collected, will be present. The effect on the resolution can then be found by constructing the
corresponding truncation function T(S). Its FT™ will be the corresponding ‘blurring function” t(r).

Though ‘blurring” sounds messy, it is here a precise mathematical procedure.

2). Forming a crystal in one dimension

The convolution of a function with a o —function centered at position a is, as we saw, the function shifted
over distance a:
f(x)*o(x-a)="f(x-a).

If f(x) describes the content of a unit cell, a one dimensional crystal is formed by the “crystal function”:

f(x)* icd(x -na).

Though the sum extends from —oo to +oo, the dimensions of a crystal are limited in direct space. This
can be induced by limiting the summation over n from the numbers p to q. That is the same as
multiplying with a shape function which has everywhere the value zero except for p.a < x <qa, where its
value is 1. The size of the crystal is then a.(q—p). The Fourier Transform of the finite crystal can now be
found by the use of figure 4.

We first need to know the transform of the array of d—functions. The transform of a delta function at x =
n.ais:

FT*{5(x —na)}=exp(2zina.X),

So the transform of an equidistant infinite array will be:
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FT+{ 3 5(x - na)} _ S exp(2rinaX).

n=-o n=—o
This is the sum of exponential functions exp(n.i.¢) which can be represented by unit vectors in the
complex plane making angle n¢ with the real axis. Unless ¢ is a multiple of 2, they will cancel each
other. So (a.X) must be an integer i.e. X must have values h/a where h is an integer. The transform of an
equidistant array of 0—functions in one dimensional space with interspacing a is another equidistant array
of o—functions in the reciprocal 1-D-space, the corresponding interspacing is 1/a.

We have found a new pair of mutually reciprocal functions: a row of d—functions and another row in the
other space; the interspacings are the inverse of each other.

Infinite array ofd-functions. Infinite array of3-functions.
LT Ly
S >|al< . >l/a<
Multiplying X Convoluting %
Shape function| Shape Itransform
p q
Result — Result =
Finite Array ofd-functions Inf. array of shape transforms.
p||||||||||||||C|1 HENENEEENE
Convoluting X Multiplying X
Content unit cell h Wl\\
Result — Result ==
Finite Crystal Crystal Transform

AWM o e

DIRECT SPACE RECIPROCAL SPACE

Figure 4

A crystal can be described by a sequential procedure of multiplication and convolution of the
lattice, the shape and the content of the unit cell respectively. The transform of the crystal can be
constructed with a sequence of the reciprocal operations applied to the respective reciprocals of the
lattice, the shape and the unit cell.

In the next step this infinite array should be convoluted with the transform of the shape function, which is
a ‘Slit function’. Because the slit is wide in terms of the distance a, the result in reciprocal space is a row
of very narrow Sinc functions (see example 1 in section 4)

The last step is a multiplication with the transform of the unit cell, which is a broad function due to the
details within it. So we end up with an array of shape transforms the height of which is determined by an
envelope representing the transform of the cell content.

3). The direct and reciprocal lattice in three dimensional space

Extension of the array of J—functions from one dimensional J—functions into three dimensions is
obtained by replacing X by the vector r and the distance a by the vector a:

+00
D .8(r-na).
n,=-w
This is a row of equidistant three dimensional J—functions along the direction of a vector a with
interspacing |a|.
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A two dimensional array, called a net, can be obtained by convoluting the given array with a similar

array Zé(r - nzb) along a vector b. Figure 5 illustrates the procedure.

nzz—UD

Figure 5

A planar lattice of & functions III can be generated by a
convolution of an array I along vector a, mutual distance |a|
and a similar array II along vector b with

distance |b|.

Extending the procedure with a third non-coplanar vector C results in a three dimensional space lattice of

o —functions.
> 2 2.8(r-na-nb-ng).

Ny =—00 Ny=—00 N3=—00

This expression represents the well known space lattice of a crystal, also introduced as the translation
lattice. The unit cell is defined by the three vectors a, b and ¢, forming a parallelepiped.

We can easily construct the Fourier transform of the space lattice. Since it is a convolution of three linear
arrays, in reciprocal space we should multiply the three transforms of the linear arrays.

Direct space Reciprocal space

—

Fi |

///////

> =
1/|a|
Figure 6
The Fourier transform of a row of 0 —functions is a set of
"o—planes".

Now, the transform of the array along the direction of vector a is:

FT'Y D 8(r-na)p= Dexp(2zinas).

n=-w
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The latter expression is zero unless a.S is an integer. In the reciprocal space the projection of S on the
direction of @, must be an integer times 1/|al. In other words the end point of S is confined to a set of
equidistant planes perpendicular to a with separation 1/[a]; in the rest of the space the FT" is zero. The
transform is a set of planar 6—functions as illustrated in figure 6.

In order to generate the transform of the whole space lattice we must multiply this set of o0 —planes with a
similar set perpendicular to the vector b with spacing 1/|b|. The result is a sheaf of parallel “5—lines” as
illustrated in figure 7, where they are seen head on. The figure shows also the relationship between the
vectors @ and b of the direct lattice and a* and b* in reciprocal space: a.a* = b.b* =1 and a.b* = b.a* =
0.

Finally the multiplication with a similar set of planes perpendicular to ¢ produces a three dimensional
lattice of ¢ —points in reciprocal space. This is the reciprocal lattice. Both the direct and the reciprocal
lattice are introduced here as a three dimensional array of J—functions. They form a pair of reciprocal
functions, they are each others Fourier Transforms.

The relationship between the generating vectors a, b , ¢ and their reciprocals a*, b* and c* is:

aa*=1;b.b*=1;c.c*=1
ab*=a.c*=b.a*=b.c*=c.a*=c.b*=0

which generate the reciprocal lattice.

Box 3. Consequences of alternative formulations of the Fourier Transform.
In order to prevent confusion it should be noted that in other branches of science, notably Solid
State Physics and Chemistry, slightly different formulations of the Fourier Transform are preferred.
Though they are mathematically equivalent, mixing them up can lead to substantial confusion and
errors.
In contrast with the definition we introduced in section 2, the FT" is sometimes given by

F(S") = % [f(r)exp(-ir.S")dr
w

or by
F(S") = ij f(ryexp(=ir.S")dr.
27

Note that a minus sign in the exponent implies that a plus sign appears in the reverse
transformation and that these signs are opposite to those in our definition. Note also the place of
2m. It implies that S'=27S; the reciprocal space is blown up by a factor 2x . As a consequence
the relations between the direct and reciprocal lattice vectors change into a.a* = 2. etc.

The second form for F(S ') has the extra complication that the factor 2@ must be omitted in the
reverse transformation.

One of the advantages of the definition used in structural research is that one never has to worry
where the factor 27t must be put. The expressions for FT" and FT are symmetrical except for the
plus and minus sign.

4). Forming the three dimensional crystal

Since crystals, and thus their lattices, have limited size we should multiply the expression for the three
dimensional space lattice in 3) with a shape function g(x,y,z). g(r) can be a box-function (possibly reduced
to a thin plate), a sphere or whatever form the crystal might have. In order to construct a real crystal we
should convolute the so properly truncated lattice with a three dimensional function f(X,y,z) describing the
structure of the parallelepiped with edges a, b and ¢ , the (primitive) unit cell.
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Figure 7

Two intersecting sets of parallel plane J—functions

in the reciprocal space. The result of the multiplication is a sheaf of
parallel lines normal to the drawing paper.

It is the FT" of the lattice in figure 5.

The vectors a* and b* are the vectors generating a two-dimensional
lattice reciprocal to that of figure 5.

If f(Unit Cell) = f(r) describes the scattering power p(r), or any other feature of the unit cell, that feature
for the whole crystal is given by the convolution of it with the truncated lattice:

"Crystal Function"(r) = f(Unit Cell)* {g(x,y,z) X z z Zé'(r —na-n,b— n3c)}

Ny =—00 N,=—00 N3=—00

The Fourier transform of this ‘Crystal Function’ can now be found by successive convolution and
multiplication of the transforms of the different parts in the expression, analogously to figure 4.

Thus:

In reciprocal space the transform F(S) of the Crystal Function is zero everywhere except close to points
H=h.a*+k.b*+1.c*, in which h, k and | are integers. All of these points are surrounded by a narrow
nonzero area where the product of the transform of the shape function with the FT" of the content of the

unit cell shows up.

5) The scattering experiment.

At the locations S = H, for instance scattered intensity I(S) will show up which is, according to Box 1, the
scattering amplitude A(S) times its complex conjugate:

I(S)=A(S) x A*(S).
For X-ray diffraction the scattering power p(r) is the electron density in the sample, which is in general a
real function’. Then, according to section 5, A(-S) = A*(S) and so I(S) = I(-S), i.e. the intensity in the

reciprocal space is a centro-symmetric function. This rule is called Friedel’s Law.

Since the scattering amplitude A(S) is the FT" of the electron density p(r) we have the relation:

> If anomalous scattering may be ignored.
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FT™ {A(S) x A* (S)} = p(r)* p(—r).

The resulting function in the direct space is called the Patterson function. Although p(r) is not directly
obtained from it, the Patterson function forms a useful tool in structural analysis.

8. The operations ‘Section’ and ‘Projection’ form a reciprocal pair
A planar Section of a function f (X,y,z) along the X,y-plane is found by making z=0: f(x,y,0). This function
shows the x,y-dependence of f in the plane z=0.

Projecting of a function f(X,y,z) along the z direction is collecting for each combination (x,y) all of f along
the z-direction. In mathematical terms it is taking the integral of the function f(x,y,z) along z:

f (x.y)= Tf(x.y,z)dz.

The function f,(X,y) is the projection of f(X,y,z) along the z- direction.

We will show now that the FT" of the projection of f(X,y,z) along the z-direction is the planar section
F(X)Y,0) of F(S).

The mathematics is simple but you may just skip it:
f(r)=1f(x,y,2) =FT"[F(S)]=FT [F(X.Y,Z)],

f(xy)= jf(x,y,z)dz =
= [ LT FCY.Z)exp[27i(x X + yY +2.2Z)]dX dY dZ Mz =
= [ {] exp(-27izZ)dz2}E(X.Y.Z).exp[27i(xX + yY)[dX dY dZ =
= [I] 8@) B (XY, 2).exp[27i(x X + yY)]dX dY dZ =
= [T F(X.Y,0).exp[-27i(x.X + yY)]d X dY.

The result is that f(X,y) apparently is the FT  of F(X,Y,0). Of course reversing the procedure and
exchanging direct and reciprocal space lead to similar true relations, which we will not explicitly prove.

The reasoning and the proof apply to Carthesian axes as well as to crystal axes where coordinates X, y and
z refer to the axes @, b and ¢ in the direct space and X, Y and Z to the reciprocal axes a*, b* and c*
respectively.

So, if we have in some way obtained the values of F(S) in the X,Y-plane, we can find, by Fourier
transforming, the projection of f(x,y,z) along the z-direction, no more and no less.

In a similar way we can project a whole 3-D function onto a straight line. Integrate the function for
instance over both X and y in the plane z=1z' and assign the result to the point (0,0,z'). The proof is a

straightforward extension of the one given above. It shows that the function F(0,0,Z) is the FT" of the
projection

t'@=]"[Treoy.2axdy
of the f(x,y,2).

Thus if we know F(S) along a straight line S =Z.c*through the origin, we know how the function f '(z)
looks like.
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9. The use of sections and projections

If a crystal has an n-fold axis of symmetry, this axis is perpendicular to the other axes. The n-fold
symmetry will then in reciprocal space show up in a section perpendicular to the direction of the axis. We
take the z- and thus the Z-axis along the direction of the n-fold axis. Whether it is a simple axis or a
screw-axis can be seen if F(S) is determined along the direction of the axis, which will reveal the
projection of the structure onto the axis. For a 63-axis such a projection will have half the period of the
crystal in that direction. In reciprocal space the interspacing along reciprocal lattice points is thus twice as
large. The condition for possible reflections then is for 00l reflections I=2n (even). If the periodicity is six
times as large as expected from the crystal axes, the screw axis is a 6;- or a 6s-axis. See figure § for a 4,
axis.

)
9 ‘:C % A

7
9 & D
) v

—] .
1P |
b 9
atb)2 p=|cl/4
(001)-plane
9 - 9
Possible hkO reflections ifh +k = 2n Possible 00l reflections ifl = 4n
Figure 8.

Left: an illustration of an n-glide plane. The reflection plane is perpendicular to C.

In a projection of the structure onto (001) the two dimensional cell is twice as small as
the crystalline one. In the corresponding section in reciprocal space the apparent cell is
twice as large as the unit cell: h k 0 - reflections are only possible for h+k =2n.
Right: the effect of the projection of the whole structure onto a 4,-axis. The projection
has the periodicity p = ¢/4 and therefore 00l reflections are only possible for | = 4n.

The same reasoning applies to glide planes. Projection of the crystal structure onto a glide plane will re-
veal the projection of a fraction of the structure plus its ‘glide reflected images‘. In the projection they are
identical but shifted due the glide over an integer fraction of the crystalline unit cell. In the reciprocal
space the corresponding two dimensional section of the unit cell will be a few times larger than the true
cell. The size depends on the kind of the glide plane considered: a, b, n or d. The apparent cell will reveal
the sort of the glide plane by the ‘Conditions for possible reflections’ in the International Tables.

The same procedure will reveal the rules for possible reflections when applied to structures with centered
lattices, ( F, I, C, etc.) as they appear in the International Tables.
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Structural Analysis

David Watkin

Chemical Crystallography, Department of Chemistry, Chemistry Research Laboratory, University of
Oxford, Mansfield Road, Oxford, OX1 3TA, UK, WWW: http://www.xtl.ox.ac.uk/ and
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By the mid-1980's X-ray structure analysis in the UK had fallen victim to a Catch 22 scenario, and had
then shot itself in both feet.

The massive advances in diffractometer technology and Direct Methods programs that had occurred in
the previous 20 years, plus the tumbling cost of computers, meant that single crystal structure analysis
was on the brink of becoming a routine analytical tool. Chemists realised that they now had access to a
more-or-less reliable method for determining detailed molecular structure, and crystallographers
emphasised this when preparing proposals for new equipment. Crystallography, one was told, was quick
and easy. It had almost moved from being a science to being a technology, and as such was well funded
in terms of diffractometers being installed. One of the down sides of this shift in emphasis from research
to providing a service was the knock-on effect on teaching. Many UK universities, faced with the
problem of fitting more new aspects of chemistry into an already packed time table, chose to reduce the
time allocated to crystallography courses. Thus, ironically, at a time when X-ray crystallography was
able to provide better information faster than ever possible before, undergraduates had less knowledge of
how it worked.

During 1985 various members of the BCA talked over this problem. Amongst others, Michael Wolfson
and Chris Gilmore were particularly keen to see something being done to restore the level of expertise
amongst young UK crystallographers. In 1986 David Watkin was talked into taking a proposal to the
BCA Council. There, it was decided that the BCA would give its blessing to the Chemical
Crystallography Group running an Intensive Course. It was suggested that we formed a small committee
to look into both the funding of the course (which the BCA could not underwrite), and its scientific
content. The course was to be aimed at young (PhD and Post Doc) UK students, with any spare capacity
on the course being offered to international participants. Olga Kennard was invited to be overall Director,
though most of the detailed work devolved onto other people. A school was projected for January 1987.

I contacted all the UK companies that I felt might be benefiting from advances in X-ray crystallography,
and Judith Howard took on the task of seeking matching funds from SERC. In addition to support from
diffractometers manufacturers, (Enraf-Nonius Ltd, Nicholet Instruments Ltd and Siemens AG), we had
support from software companies (Chemical Design, Ltd and IBM UK Academic Programs), and The
Digital Equipment Company Ltd who loaned us a Microvax. At that time there was real diversity in the
pharmaceutical industry, and eleven companies sponsored the project (Beecham Pharmaceuticals, Esso
Chemicals, Fisons Pharmaceuticals, Glaxo, ICI Pharmaceuticals, ICI Plant Protection, Searle, Smith-
Kline-French, Wellcome Foundation). Judith was able to convince both the Chemistry and the Physics
Committees at the SERC to support us. In the event, we were able to offer bursaries to 42 participants.
Several universities were contacted as possible venues for the school (Oxford being immediately
eliminated because of the cost), and Aston was chosen because there was enthusiastic local support from
Carl Schwalbe and Phil Lowe, there were good facilities and accommodation, and the price was right.

The programme was very ambitious, with 16 speakers lecturing 9.00-18.00 for six days, with only one
free half-day mid way through. The participants were divided into 7 groups each with a new-generation
crystallographer as group leader. The lectures took place in a traditional chemistry lecture theatre. Time
was allocated in chunks - for example, Bill Clegg had from 2.15 to 4.45 on the first day to deal with cell
determination and the orientation matrix. However, the speakers were supposed to break up the chunk by
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setting problems for the participants from time to time. The evenings were given over to group problem-
solving sessions, and interaction with the speakers.

In the post-mortem after the school, several problems were identified. The most serious were that many
students had forgotten much of the basic mathematics they would need for the exercises, and that students
working by themselves in the lecture theatre could not benefit from discussions with their peers. The
responses on the student questionnaires convinced us that hands-on computing was not very effective use
of time, and that there should be some adjustments to the time allocations. Very many students wanted
explicit information on how to use certain programs. The program committee then (and now) was
strongly opposed to this on the basis that a good understanding of fundamental principals should enable to
students to use any program, and even be able to make informed decisions as to their merits. The school
was felt to have been successful, and preparations were begin for a second school in 1989.

The second school was also well supported by the pharmaceutical industry, and backed by the SERC.
The number of speakers was reduced slightly as a result of the student questionnaires, and the number of
participants rose to 57. To improve group interactions, the course was re-organised. The lectures still
took place in a standards lecture theatre, but the participants trailed out every 45 minutes to an adjacent
room where they could work in groups round a table. The re-location proved to be time consuming, but
the group working was an instant success. It gave the less experienced participants to learn from the more
experienced ones, and brought them into better contact with their tutors.

For the third school in 1991, the number of participants had risen to 66 and the number of speakers to
fallen to 13. Industrial sponsorship remained good. The main change was to abandon the use of the
lecture room, and run the whole course in an open plan area where the students could remain in their
groups round tables while the lecturers talked. This has remained a defining feature of the school ever
since. In addition, formal evening sessions were replaced by 'scientific entertainments' that could take
place in a bar, for example a bar quiz that included both general knowledge and crystallographic
questions.

By 1993 the number of participants had risen to 73, and the number of tutors fallen to only 5. This
reduction in the number of tutors came about largely through a detailed reassessment of the aims of the
school and the changes in the skills of the participants. Each year, the participants had been set a simple,
anonymous, multiple choice questionnaire to enable us to assess the student's background skills. It had
become evident that most participants had been exposed to very little theoretical crystallography. The
course now contained more basic material (matrix algebra, trigonometry etc), so that other interesting but
marginal topics (exotic sources, powders, macromolecules) had to be excluded. The smaller number of
speakers meant that they each had a much larger lecturing burden, but it did improve continuity and
reduce the chance of small but important topics being covered by no-one.

This has remained the pattern until the current day. The lecturers have exchanged topics with each other
from time to time to preserve vitality. Recent schools have attracted about 80 participants, who continue
to work in groups of eight with a tutor. We are now beginning to see students from earlier courses
returning either as tutors or lecturers. The lecture notes form a 20 chapter book, and in 2001 an edited
version was published by OUP as Crystal Structure Analysis Principles and Practice, (Clegg, Blake,
Gould and Main), ed Clegg. Perhaps the most sad reflection is that there was no sponsorship at all from
pharmaceutical companies in 2005.
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BCA Intensive Course in Crystallography: Multiple Choice Exercise

This is intended as a quick assessment of the general background knowledge of the group. Please do NOT sign the paper. An-
swer each question by circling the letters corresponding to your choice, and insert a number on the scale 1-5 indicating your
degree of confidence in your reply (5 = very confident, 1 = very unsure).

1. The characteristic wavelength of a copper X-ray tube is:
a) Directly proportional to the applied voltage.
b) Inversely proportional to the tube current.
¢) Related by E =hc/A to the power consumption of the generator.
d) Dependent on the gas used to fill the tube.
e) None of the above.

2. Nearly perfect diamonds give diffraction patterns with I proportional to F instead of F2. This is caused by:
a) Primary extinction.
b) Secondary extinction.
c) Absorption.
d) Anomalous dispersion.
e) Negative quartets.
f) None of the above.

3. Lowering the temperature of data collection should significantly reduce:
a) Static disorder.
b) Dynamic disorder.
¢) Anomalous scattering.
d) Absorption.
e) The density of the crystals.
f) None of the above.

4. P2/c is by far the most common space group for molecular materials. An important reason for this is:
a) It allows parallel chains of polar molecules.
b) It is centrosymmetric, so crystallographers have tended to study materials in this space group.
c¢) It provides efficient packing for many molecules.
d) It can readily accommodate optically pure chiral molecules.
e) None of the above.

5. Single enantiomers can crystallise in which of the following space groups:
a) Pna2,; b) Cc c) P4,2:2 d) Fdd2 e) Pa3

6. The peaks in a Patterson synthesis represent:
a) One end of interatomic vectors.
b) Atomic positions.
¢) The midpoints of interatomic vectors.
d) The reciprocal space equivalent of the diffraction pattern.
e) None of the above.

7. Which of the following is not significant for the relationships used in direct methods.
a) Matter is atomic in nature.
b) Electron density is nowhere negative.
¢) Most space groups have alternative permitted positions for the origins.
d) Data are normally present to a resolution better than 1 A.
e) None of the above.

8. In least squares refinement, the origin must be fixed in:
a) All chiral space groups.
b) All polar space groups.
¢) All centrosymmetric space groups.
d) All C, I and F space groups.
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e) All structures containing heavy atoms on special positions.
f) None of the above.

9.

likely because:
a) The structure has been very accurately determined.
b) The structure is very imprecise shown by the absence of e.s.d’s.
¢) A restrained refinement was carried out.
d) A constrained refinement was carried out.
e) Graphitic packing is possible in the structure
f) None of the above.

In a structure extracted from the Cambridge Data Base, a phenyl ring has all C-C bonds equal to 1.359A. This is most

10. Bond lengths involving hydrogen are significantly underestimated in structures determined by X-ray diffraction. This may

be attributed to:
a) The low scattering power of hydrogen.
b) The significant contribution of the hydrogen nucleus to the scattering of X-rays.
¢) Hydrogen has more than one isotope.
d) The very low melting point of hydrogen.
e) The asymmetric distribution of the hydrogen electron density.
e) None of the above.

Approximate Timetable for Tenth BCA Intensive Course in X-Ray Structural
Analysis, Trevelyan College, Durham, UK, 4 - 12 April 2005

Monday 4 Tuesday 5 Wednesday 6 Thursday 7 Friday 8 Saturday 9 Sunday 10 Monday 11
0800-0900 Breakfast Breakfast Breakfast Breakfast Breakfast Breaktast Breakfast
0900-1000 Symmetry WC Data acquisition JM{JFourier/Patterson W({Direct methods PMRefinement PM |Refinement DJW Derivation of Results SP
1000-1100 Symmetry WC Data acquisition JMJFourier/Patterson WJDirect methods PMRefinement PM |Refinement DJW Derivation of Results SP
1100-1130 |Today only: Coffee Coffee Coffee Coffee Caoffee Coffee Coffee

Registration
1130-1230 | 12:00 — 14:30  |Symmetry WC Data acquisition AJHFourier/Pattterson W{Direct methods PMRefinement PM |Refinement JSOE Interpretation SP
1230-1400 |Today only: Lunch Lunch Lunch Lunch Lunch Lunch Lunch

Introduction 1
1400-1500 |starts at 14:45  |Symmetry WC Data acquisition AJHFourier/Patterson W Free time Refinement PM |Twinning SP Interpretation/CIF SP/AJH

DJW/PM

1500-1600 |Introduction 2 Symmetry WC Data acquisition AJHDirect methods PM  [Free time Refinement DJV]Twinning SP Databases AJB
1600-1630 |Tea Tea Tea Tea Free time Tea Tea Ted
1630-1730 |Introduction 3 Crystallisation AJHData acquisition AJHDirect methods PM  |Free time Refinement DJV]Derivation of Results §Databases (CCDC)
1730-1830 Surgery WC (IT) |Neutrons JKC surgery Free time Powder IR-E__|Surgery Surgery
1830 Dinner Dinner Dinner Dinner Dinner Dinner Dinner
2000 Matrices DJW __ |Bar Quiz Ceilidh Presentations Free time Expert Panel  |Practical Issues - an__| Course Dinner

optional bar session
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Teaching of the Fundamentals of Crystallography

Dieter Schwarzenbach
Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Cristallographie, Le Cubotron, 1015
Lausanne, Switzerland, WWW: http://lcr.epfl.ch/page37426.html ; E-mail: dieter.schwarzenbach@epfl.ch

What are the Fundamentals of Crystallography? What is Crystallography? A general definition might be
"Geometry and patterns: the spatial arrangements of atoms in all types of matter; determination,
description, classification, implications of atomic patterns." Even though the IUCr journals, the
International Tables and most national societies of crystallography cover the full scope of this ambitious
claim, the image and reputation of crystallography and of the profession of crystallographer has evolved
from various traditions. In the English speaking world, people tend to classify a crystallographer as a
chemist who determines crystal structures and is thus little better than a technician. Teaching
crystallography is therefore not fundamental and should enable students only to master a somewhat
complicated technique. In contrast, my thesis adviser Fritz Laves at ETH-Zurich in the early 1960s
considered crystallography as the center of all natural science, in the core of mathematics, physics and
chemistry. He was the former student and successor of the great Paul Niggli whose breadth of
publications was gigantic although he considered himself as mineralogist. Laves used all sorts of tools for
his research, including spectroscopic methods and electron-microprobe analysis. X-ray diffraction played
an important role, but his students did not learn the art of structure determination. I made up for this
deficiency very easily as a post-doc.

From 1954 to 1976, Laves read an important course of crystallography, about 56 hours (2 hours a week
during two semesters) plus exercise sessions, that was compulsory for first-year chemistry and earth
science students, and optional for physicists. The contents were :

— geometrical crystallography, indices, zones, stereographic projection and optical goniometers,
twinning;

— symmetry, crystal classes, crystal systems, Bravais lattices, in-depth training with wooden models;

— diffraction, Laue and Bragg equations, reciprocal lattice, powder methods including indexing of cubic,
tetragonal and hexagonal powder patterns (by hand), reflection conditions;

— birefringence and crystal optics;

— crystal chemistry, structure types, coordination polyhedra, closest sphere packings, binary A;,X,
compounds for many (m, n), intermetallic structures (Laves phases, of course), silicates.

Similar courses were given at that time at many German Universities as evidenced by the exceedingly
popular textbook of W. Kleber, Introduction to Crystallography (1st edition 1955 in German, English
translation by W.A. and A.M. Wooster 1970). Various excerpts of these fundamentals figure today in
basic courses of chemistry, physics, materials sciences, earth sciences and biology, tailored to particular
needs and dependent on the insights of the teachers, often using a nomenclature that differs from IUCr
usage (compare €.9. standard text books of solid state physics).

The curriculum at ETH-Zurich in the 1960s for advanced students wishing to specialize in
crystallography is of less interest today, except for a two-week full-day practical course of X-ray
diffraction where the use of film cameras (Weissenberg, Retigraph, Precession) and of powder cameras
(from Debye-Scherrer cameras to focussing monochromator methods) was taught. I encountered my first
experimental observation of a multiply twinned feldspar in this course in 1958.

Starting in 1969, I gave a course with the same weight as the one of Laves at Zurich, 56 hours and
accompanying exercises, at the University and the Swiss Federal Institute of Technology at Lausanne. It
was compulsory for 2™ year physics and materials science students. The contents of this course evolved
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over the years, and the number of hours fluctuated. But it still exists today as two separate courses for 2™
year physicists and materials scientists, given by Gervais Chapuis. During all these years, I endeavoured
to include the following topics:

— geometrical crystallography, the mathematics of oblique coordinate systems and lattice bases leading
directly to the reciprocal lattice base;

— symmetry, group-theoretical concepts for understanding International Tables A (space groups);

— diffraction, Fourier transform, phase problem and atomistic models for its solution, powder diagrams
for materials identification and the study of phase transitions by observing the splitting of powder
lines;

— anisotropy and tensorial properties of crystals, classical crystal optics;

— sometimes, I also included some crystal chemistry including simple inorganic structures important for
solid state physics and materials science.

Materials scientists were then ready for a follow-up course on applications such as strain analysis from
line broadening in powder diagrams, and grain orientation analysis. The physicists continued with a
course on dislocation theory and plastic deformation (given by a specialist in this field). My basic course
met with a mixed success with the students, their judgment showing a double-humped camelback-type
curve: some gave it the highest grade, some found it abominable. The materials scientists found it
somewhat too mathematical. The physicists with their very superior mathematical training experienced
difficulties connecting the very abstract mathematics courses on group-theory with the corresponding
crystallographic geometrical realizations and space visions. Many students gave quite flattering opinions
on the course only in retrospect after their graduation.

As did Laves in Zurich, we also offered for over 30 years, and still offer, a two-week practical course in
X-ray diffraction and structure determination that evolved from the use of all sorts of cameras and
diffractometers to a structure determination course with today's modern methods. It is attended mainly by
graduate students, sometimes post-docs, with very diverse backgrounds. More recently, a course on
physical methods of structural biology is given by Marc Schiltz. For many years, Gervais Chapuis has
read a 28 hour course without exercises on X-ray structure determination for 4™ year chemists. This exists
actually as an option that does not appear to be encouraged by the chemistry faculty.

I believe that crystallography should be included on the undergraduate and/or graduate level in many
scientific disciplines. It belongs to a meaningful scientific education. I do not mind if the material is
taught under a different name than crystallography as long as it is taught properly. I resent naive pictures
of the 14 Bravais lattices, trivial deductions of Bragg's equation, and restricted presentations of the family
of closest sphere packings. Notions on the following topics should be acquired by all students:

— The lattice symmetry of the ideal crystal is the key to understanding anisotropy, diffraction of
radiations, electronic and vibrational band structure, and is the standard for the definition of crystal
imperfections.

— Point groups, and not only the crystal classes, should be presented and memorized geometrically. This
is fundamental for both spectroscopy and crystallography and should be taught in depth, rather than
twice. A picture of the symmetry elements goes a long way to intuitively grasping the meaning of
invariant subspaces and character tables.

— Some basic crystal chemistry is useful at least for materials scientists and solid state physicists
(chemists do not seem to care any more for simple substances). A presentation of closest sphere
packings presented as an OD-structure family (polytypes) easily includes diamond-Lonsdalite and
semiconductor structures, ice, graphite, Laves phases.

— The Bragg equation should be familiar to every scientist. I would also include the powder method and
the information it reveals.
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It appears most important to me to show the general validity of the above notions. It is a pity that
crystallographers and solid-state physicists use different languages and separate courses to express the
same ideas.

What about X-ray structure determination, for chemists and biochemists? It may appear to the non-service
crystallographer that I am, that very little needs to be taught in this field. Excellent programs for both the
measurement process and for data interpretation handle most problems of symmetry. An understanding of
the theory (e.g. origin definition, triplets, probabilities, ADPs, coordinates) is not necessary for successful
structure determination. The molecule appears magically on the screen if only one knows how to handle
the programs. Or is it not that easy, as hinted at by the number of problem papers received by Acta Cryst.
C and E? It may of course happen that the solution does not readily appear. Intervention by a professional
crystallographer becomes then necessary who's education is very much more demanding and not
discussed here. A course on fundamentals needs only to cover the phase problem, the models for solving
the phase problem and an assessment of the meaning and the quality of the results:

— The phase problem: Fraunhofer diffraction; representation of the electron distribution by waves, i.e.
the Fourier transform explicitely or implicitely; image formation by interference of waves, i.e. the
reciprocal Fourier transform.

— The missing phases require definition of a model, i.e. one looks for an electron distribution with
certain properties. The standard methods are based on atomicity, i.e. the structure is a superposition of
atomic electron distributions that are smeared by thermal motion and whose number and types are
known. This idea may, but need not, be expanded to include electron density determination with
aspherical atoms, as well as models of thermal motion. More importantly, the charge flipping (CF)
method of Oszlanyi & Siito (Acta Cryst. A60, 134-141, 2004; Acta Cryst. A6l, 147-152, 2005)
proposes a much simpler model where the electron density is supposed to be large in only about 20%
of space and negligibly small in the other 80%. CF appears to solve just about any difficult structure
with data at atomic resolution, with the added quirk that the use of symmetry is harmful. Thus, there is
not even a need to teach symmetry at this stage! Starting from here, the teacher may address imaging
of non-periodic objects with limited dimensions. I would rather do this than discussing recipes of
structure determination.

— If recipes are to be discussed, I would start with the Patterson method. But rather than using a
measured data set and the computer, I would devise an exercise where the students calculate from the
known atom coordinates the vector space of a simple structure (I chose calcite, CaCOs). I then would
make the students manipulate by hand some triplet relations (examples may be found in M. M.
Woolfson's textbook, 1970). Although this is old-fashioned, it is more informative than an impressive
demonstration of structure solution with crystals brought by the course participants. The latter should
be included only for its high propaganda value.

— The chapter on meaning and quality should include a discussion of acceptable bond lengths and angles.
Aberrant thermal ellipsoids might be illustrated by rms displacements along interatomic bonds and the
Hirshfeld test. The meaning of reliability factors and standard uncertainties cannot be avoided,
although these are quite technical subjects.

I believe that useful information on the essence of X-ray structure determination can be taught in a post-
graduate course of about 7 hours (e.g. 1 hour a week during half of a 14-week European semester), maybe
as part of a course including other methods of analysis. A few exercise sessions could be offered via the
Internet. 1 do not believe in flashy propaganda courses demonstrating to students the effortless marvels
that can be wrought. Rather, I believe that a useful course tends to be a demanding course.

The sum of our teaching efforts in Fundamentals of Crystallography at Lausanne is published in French
in a reasonably priced textbook: Dieter Schwarzenbach & Gervais Chapuis, Cristallographie, ond edition,
Presses polytechniques et universitaires romandes, Lausanne (2006). Its 7 chapters are entitled: (1)
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Geometrical crystallography, (2) Symmetry, (3) X-ray diffraction by crystals, (4) Determination of crystal
structures, (5) Simple crystal structures, (6) Tensorial properties of crystals, (7) Exercises with solutions.
The first edition of this textbook, without chapters 4 and 5, has also been translated into English by A. A.
Pinkerton and published as a too expensive book by Wiley (1996).

In addition, we have created a series of interactive Java applets which can be directly accessed from the
web at URL http://escher.epfl.ch/. They serve to familiarize students with the concepts of point and space
group symmetry, reciprocal space, diffraction and Fourier transform. In addition, they offer access to a
large database of crystal structures and intuitive tools for their representation.
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Teaching Crystallography and Related Subjects at Novosibirsk State
University, Russia

Elena Boldyreva
Head of the Chair of Solid State Chemistry, Novosibirsk State University, Pirogova, 2, Novosibirsk
630090, Russia ; E-mail: boldyrev@nsu.ru

As compared to some other countries, Russia still has many advantages in teaching crystallography and
related subjects. The main advantage is that crystallography remains a compulsory course for chemistry
students, mineralogy / geochemistry students, and, in some universities, also for physics students. Such
universities and high schools as Lomonosov (Moscow) State University, S-Petersburg State University,
Nizhnii Novgorod State University, Samara State Universities, Physical Technical Institute (Moscow),
and many others have a long tradition in this field. Their experience is reflected in numerous text-books,
original lecture courses and teaching materials, some of which can be found either at the corresponding
internet sites  (http://www.chem.msu.su/eng/, http://ns.crys.ras.ru, http://www.geol.msu.ru/english/,
http://www.geol.msu.ru/english/deps/crystal.htm, http://www.inorg.chem.msu.ru/,
http://www.chem.msu.su/eng/lab/cryschem/, http://www.chem.msu.su/eng/chairs2/welcome.html), or by
contacting directly the responsible people (secr@ns.crys.ras.ru, nb_bolotina@hotmail.com,
dekanat@phys.unn.ru, chuprun@phys.unn.ru, elbel@geol.msu.ru, slov@phys.chem.msu.ru,
siicm@hotbox.ru, aslanov(@struct.chem.msu.ru, http://www.che.nsk.su/education/). Some of the groups
have also prepared short contributions to this Newletter, other will do this for the next issues. Apart of
teaching the basics of crystallography, crystal chemistry, mineralogy, structural analysis, Russian
universities provide also various courses in crystal physics, materials sciences, solid state chemistry, and
related subjects. This is very important, to show that crystallography is a modern science, and not just a
historically important, but no longer demanded subject. To give access of Russian students to the most
recent achievements of crystallography, we have initiated preparing a series of teaching materials in the
electronic format, to be accumulated at university servers, but also as a distributed electronic library. The
information on this library will be available, when some “critical amount” of materials will be already
accumulated.

Novosibirsk State University does not belong to very old universities in Russia. It has not celebrated its
50" year anniversary yet. It is a very dynamic university, that is aimed at training intelectual elite for
Russian Science and therefore develops new approaches to teaching. It has its own experience in teaching
crystallography and related subjects, which is somewhat different from what is common at other places.

An interesting point is that crystallography is being taught to all chemistry students, as in other
universities, but not as a separate course — it is a part of a general course in solid state chemistry (Prof. E.
Boldyreva, boldyrev@nsu.ru ). All the basic notions of fundamental crystallography, crystal chemistry,
crystal physics are being introduced in a comparison with the structure and properties of individual
molecules, widely using group theory, basic physics, vector algebra, analytical geometry. This allows us
to “compress” a very large material into 2 months time (2 hours of lectures and 3 hours of practicals per
week). After the introduction into the basics of the structure description of ideal crystals, we consider
more briefly incommensurate structures, quazicrystals, nanostructures, and then enter the second part of
the course (2 months more) related to the structure of real solids — different types of point defects and
dislocations are considered, surface structure and surface properties, the structure and properties of
heterogeneous systems. Some details on the course are given in the paper: [Boldyreva E. V. An
experience of teaching solid-state chemistry as a comprehensive course for chemistry students // J. Chem.
Educ, 1993, 70(7), 551-556]. After this general course students getting special training in inorganic
chemistry, catalysis, solid state chemistry attend also special courses in crystal chemistry (Prof. S.
Solodovnikov, solod@che.nsk.su ), structural analysis (Prof. E. Boldyreva, boldyrev@nsu.ru, Prof. S
Tsybulya, tsybulya@catalysis.nsk.su), introduction into Cambridge Structural Database (Prof. E.
Boldyreva, boldyrev@nsu.ru). Chemistry students show a large interest in crystallography and its various
applications, and the competition for the corresponding specialities is high. Crystallography and crystal
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chemistry are also taught as general courses at Geology department (Prof. Yu. Seryotkin,
yuvs@uiggm.nsc.ru). Since 2006, crystallography, crystal chemistry, structural analysis and materials
sciences will be taught also to physics students (Master level). This new specialization is supervised by
Prof. S. Tsybulya, tsybulya@catalysis.nsk.su. Lecturers are invited from Chemistry and from Physics
departments. As original courses, one can mention “Crystallography at extreme conditions” and “In situ
studies of solid-state reactions (Prof. E. Boldyreva, boldyrev@nsu.ru). More information is available at
www.phys.nsu.ru.

Fig. 1: a) Practicals in structural analysis. Powder diffraction and b) single-crystal diffraction at non-
ambient conditions — is an important original course

Fig. 2: a) A lecture in structural analysis and b) practicals in crystallographic computing

In addition to general and special lectures and practicals in the regular curriculum, Novosibirsk State
University organizes comprehensive lectures for senior school-children at special Summer and winter
schools. Another important field of activity is related to continued education for those who have
graduated from the University some time ago and would like to up-date their knowledge. A
multidisciplinary Research and Education Center (REC-008) plays an important role in this activity. As a
bright recent event, a workshop “ICDD: powder diffraction file and grant-in-aid program” can be
mentioned, that was organized in Novosibirsk from October 18th till October 20th jointly by Research
and Education Center REC-008 at the Novosibirsk State University, Boreskov Institute of Catalysis, and
Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of the Russian Academy of
Sciences. The Seminar was initiated and supported by the International Center of Diffraction Data
(ICDD). The main purpose of the seminar was to give an overview of the ICDD activity, of the new
version of the PDF-4 database, to discuss various applications of the powder diffraction techniques, and
to involve researchers and students from Siberia into a cooperation with the ICDD via the “Grant-in-aid”-
program. Russian and English were the working languages of the Seminar. 66 registered participants
represented Novosibirsk, Krasnoyarsk, Ulan-Ude, Omsk, Tomsk, Barnaul, Tyumen’, Kemerovo,
Novokuznetsk, Irkutsk. The participation of 9 young researchers and students from outside Novosibirsk
was financially supported by Civilian Research and Development Foundation (CRDF, USA). The
Workshop has initiated a series of regular (one-two per month) seminars on powder diffraction, organized
by REC-008 and attracting students from the Novosibirsk State University and researchers from various
Institutes of the Novosibirsk Scientific Center.
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Crystallographic Teaching at the Laboratory of Inorganic Crystal
Chemistry at Moscow State University, Russia

Evgeny Antipov
Dept. of Chemistry, Moscow State University, Moscow, 119899, Russia ; E-mail:
antipov@icr.chem.msu.ru

The laboratory of Inorganic Crystal Chemistry at Chemistry Department of Moscow State University
exists over 50 years. It was organized as a service group by Prof. Yuri P.Simanov Since that time it
covered the way from X-ray service group to the laboratory performing full scientific studies starting
from syntheses of chemical compounds up to investigations of their structures and physical properties.
Prof. Leonid M.Kovba in 1960’s to 1980’s did a lot to introduce X-ray powder diffraction as a common
used method for the study of inorganic compounds. Since January 1996, the laboratory is headed by Prof.
Evgeny V.Antipov.

Moscow State University is an educational institute, and the Laboratory participates in the teaching
program as well. It starts with the beginning. At the first course Prof. Antipov presents several
introductory lectures on X-ray diffraction and its application in chemistry. The second year one of groups,
specialized in inorganic chemistry, has a special semester course of basis in X-ray powder diffraction,
held by Prof. Antipov. Later, more detailed information, including theoretical basis of X-ray diffraction
are presented in courses "X-ray analysis" and "Experiments in the X-ray analysis" for 3rd year students of
the Department of Materials Sciences and 5th year students of Chemistry department by Assoc. Prof.
Roman Shpanchenko and Dr. Andrei Mironov. Finally, the special course of “Diffraction methods (X-ray
single crystal and electron microscopy) in structure analysis of inorganic compounds” for the Ph.D.
students are delivered by laboratory researchers Andrei Mironov and Artem Abakumov.

In the 1990’s, the time of active development of X-ray powder diffraction methods were unfortunately
very rare for Russian science and, especially, industry. Nowadays, there is a great requirement in the
specialists in this field. For that reason the laboratory performs the X-ray Diffraction Clinics. Late in June
2003-2005 three X-ray diffraction schools for the workers of metallurgy, cement and fertilizers industry
were organized. They learned to make phase analysis from diffraction patterns with the help of PDF Data
Base, index the diffraction patterns and calculate cell parameters, calculated diffraction patterns of solid
solutions and use the results for quantitative analysis of raw materials and products (see pictures).
Besides, several lectures devoted to the use of diffraction methods (including X-ray powder diffraction)
were delivered at III-V “Actual problems of modern inorganic chemistry and material science”, School
for students and young scientists in 2003-2005.

Fig. 1: 1st XRD Clinic at Moscow State University (June 2003)
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Within the frame of ICDD activity seven Regional Workshops were organized devoted to the modern
problem of X-ray powder diffraction, as well as the ICDD products and programs. The first seminar was
organized in 1992 in Moscow. Since that time another 6 Workshops were held in different cities, covering
different regions of Russia, Former Soviet Union Republics and even other countries (Sweden, France,
Poland, Germany). The last one was held in Novosibirsk in Academy town, the largest scientific center in
Siberia (see pictures). During these years several hundred participants took part in Workshops.

Several lectures on powder diffraction were delivered at national and international conferences: MSU
HTSC, National Crystallographic Conferences in Chernogolovka (Moscow Region), conferences on “X-
ray Diffraction and Crystal Chemistry of Minerals” in St.Petersburg, IX International Conference on
Crystal Chemistry of Intermetallic Compounds in Lviv, Ukraine, (September 2005) and others.

['!]'I" T
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Fig. 2 (a, b): ICDD GiA Workshop in Novosibirsk (18.10-20.10 2005 )
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M.Sc. Crystallography at Birkbeck College, University of London, UK

Alan L. Mackay
School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX,
UK ; E-mail: a.mackay@mail.cryst.bbk.ac.uk

J. D. Bernal (1901-1971) came as Professor of Physics to the old building (Breams Buildings) of
Birkbeck College from Cambridge and as a newly elected FRS, in 1938 to succeed P. M. S. Blackett. His
intention was to continue crystallographic research on the large molecules of living systems, but he was
soon called to war duties and did not return to Birkbeck until 1945/6. Two old war-damaged houses in
Bloomsbury were acquired for the new crystallographic laboratory and research resumed, although
general teaching in Birkbeck had continued on a part-time basis right though the war. Bernal had, in Feb.
1945, produced a memo of his objectives which were: "to set up a research centre for the study of the
structure and properties of large molecules of biological importance by all available physical and
chemical methods". He collected his research group and set to work. C. H. Carlisle took proteins and
viruses, J. W. Jeffery, inorganic materials and cement, W. Ehrenberg began to make X-ray tubes, A. D.
Booth was commissioned to make a computer and R. Furth dealt with crystal physics. Other research
workers began experimental work for Ph.D. theses.

It was clear that the formal teaching of crystallography for Ph.D. students, both at Birkbeck and elsewhere
in London should be developed and about 1948 an M.Sc. by examination degree course was launched. It
was inter-collegiate and included the participation of Kathleen Lonsdale (one of the first women to be
FRS) at University College and G. 1. Finch, FRS at Imperial College who, with H. Wilman, was
developing electron diffraction crystallography. The course was to be two years part-time (but was later
adapted to include people doing it in one year full-time) and was designed to cover the whole spectrum of
crystallography, as for example, presented by W. L. Bragg in his book of 1939 "The Crystalline State"
(Vol. 1). Indeed Bragg himself opened the laboratory at a ceremony in July 1948.

The course was under the supervision of the Advisory Board for Crystallography of the University of
London which appointed external examiners. As well as students from the various colleges of the
university there were students from industry - there were particular connections with the research
laboratory of the General Electric Company at Wembley (H. P. Rooksby). The formation of the X-ray
Analysis Group of the Institute of Physics, the appearance of the journal Acta Crystallographica and the
International Union of Crystallography all helped to produce a coherent crystallographic community
which persists today. Our first overseas students appeared and connections with, for example, Chile,
India, Japan and Egypt, began and still continue. The external examiners, drawn from crystallography
groups in other British universities contributed greatly to the recognition of uniform standards. Good
connections with the Natural History Museum Department of Minerals helped research with key
specimens and some of their staff came to the course.

There were, of course, many difficulties in the immediate post-war conditions. Luckily the main building
of Birkbeck College had been begun before the war, and supplies of bricks had been stored for the
duration, so that building could be resumed and the new building opened in 1954, although
crystallography remained in slum conditions for another decade. Food rationing had continued until the
early 1950s and equipment had to be made in-house so that a substantial workshop was a central feature.
Workshop training was deemed essential for all and the workshop was vital in maintaining cars and bikes.
Much could be acquired from war surplus equipment, both British and German, but this had to be
adapted. A major problem was the dual use of equipment for research and for teaching. Teaching took
place from 6-9 p.m. leaving the day clear for research so that many people worked long hours. Following
Cambridge practice collective tea-times were essential social engineering for discussing politics as well as
day-to-day difficulties and scientific work. All had to do almost everything for themselves and to learn all

trades (like photography and X-ray safety - regular blood tests were required and control films were
checked).
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Lecture notes were prepared on a Gestetner machine. The experience of the Cambridge school, provided
the texts which were used. Besides Bragg's book, those of W. A. Wooster, (Crystal Physics); F. C.
Phillips (Introduction to Crystallography); R. C. Evans (Crystal Chemistry), were used at the start and
many others followed. Students struggled with Linus Pauling's "The Nature of the Chemical Bond"
(1939, 1940, 1960). In the early 1950s Bernal wrote a definitive account of crystallography for the
Encyclopaedia Britannica but it was considered to be too long and was rejected but it summarised the
M.Sc. course and was circulated to students. (He had earlier written the article "x-rays and crystal
structure for the 1929 edition).

Computing always a limiting factor and Beevers-Lipson strips were used for Fourier synthesis for very
many tedious years. For many years too the intensities of spots in X-ray diffraction photographs were
measured by eye by comparison with standard strips. People were always scouring the front lines of
development for computing facilities.

Crystal physics was included but turned out not to be popular. Although the course included how to cut a
quartz oscillator plate for zero temperature coefficient nobody attempted the corresponding examination
question. There was a lot of basic mineralogical crystallography and symmetry theory.

Bernal himself suffered a stroke in 1963 and became progressively incapacitated. At that time science
was moving from "small science" to "big science" with the increasing availability of big machines,
computing, neutron diffraction, electron microscopy, the synchrotron, etc. which he did not really see. As
facilities appeared, the M.Sc. course adapted to include them.

The course continued to change with the headships of Harry Carlisle, the Tom Blundell and later David
Moss. It continued to become more biomolecular and quite recently the materials section of the Dept. of
Crystallography has moved to University College. This move reflects the continuing national run down in
science education generally. Physics, chemistry, mathematics and geology at Birkbeck College have been
forced to seek alliances with other college department to maintain the scale of operations necessary to
take part in big science in a world arena.

As the focus of molecular biology shifts to systems, the M.Res. degree in Structural Biology has replaced
classical crystallography and there are separate certificate courses in Principles of Protein Structure and in
Protein Crystallography and in Techniques in Structural Molecular Biology.

There is an M.Sc. course and an M.Res. course in Bioinformatics. All these serve also to prepare Ph. D.
students for increasingly specialised research work.

(Jeremy Cockroft has summarised the syllabus of the last M.Sc. course in crystallography and this is
available on the internet http://img.cryst.bbk.ac.uk/www/cockcroft/msc-cryst/aims.htm . It is also
reprinted below as an addendum)
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Addendum 1: reprint of webpages containing the (now defunct) Birkbeck College
M.Sc. Crystallography Course Syllabus in its final form (taken from Jeremy
Cockcroft's website : http://img.cryst.bbk.ac.uk/www/cockcroft/msc-cryst/aims.htm)

Comment from Jeremy Cockroft (added by the newsletter editor): It needs to be made clear that
some lecturers did not provide details of what they planned to teach following certain old-fashioned
teaching traditions that are no longer acceptable practice: namely walking into the lecture room and
giving a lecture on what they felt like on the day. Hence the web syllabus that I created has holes. How
you wish to add this in I leave to you, but it is an important point since times have changed in this regard.

MSc Crystallography

Aims & Objectives

The overall aim of this MSc course is to give students a broad view of the subject of crystallography. The
course is divided into two sections with the aim of providing a basic grounding in the subject followed by
an illustration of how crystallography is applied to the various scientific disciplines. The aim of section
one is to cover the concept of crystal structures and symmetry, the physics of scattering and diffraction
theory, experimental diffraction from single crystals, instrumentation and powder diffraction. Section two
explores the analysis of single-crystal data, techniques used in protein crystallography, electron
microscopy, and provides in-depths studies of the application of crystallography in different situations.
For students with a weaker mathematical background, a supplementary mathematics course is provided.

Section 1

e Crystal Structures & Basic Symmetry
Objective is to explain the description of a crystal structure in terms of atom positions, unit cells,
and crystal symmetry; and to relate the crystal symmetry to the symmetry observed in a diffraction
experiment, for symmetries up to and including primitive orthorhombic.

« Diffraction Techniques (with Camera & CADA4 practicals)
Objective is to give students a working knowledge of reciprocal space, X-ray photography with
oscillation, Weissenberg, & precession cameras, single-crystal laboratory diffractometers, and
Laue diffraction.

e Scattering & Diffraction Theory
Objective is to give the students a grounding (both mathematical and intuitive) into the interaction
of radiation with condensed matter and how this can be used in generalised crystallography. This
grounding should supplement the lectures and practicals elsewhere in the course.

e Instrumentation & Powder Diffraction (with D500 practical)
Objective is to give the students a background to the instrumentation used for powder diffraction,
to illustrate the different uses of powder diffraction, and to give as much hands-on experience of
data collection, data interpretation, and structure refinement as possible within the time allowed.

e Advanced Symmetry
Objective is to explain the salient points of higher-symmetry space groups, namely those
belonging to the tetragonal, trigonal, hexagonal, and cubic crystal systems.

e Mathematics for Crystallographers
Objective is to revise the mathematical concepts required for an understanding of crystallography
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for those students with a weak mathematical background. Specific aims include an understanding
of vectors, their properties and manipulation; matrices and how to use them; simple trigonmetry
and the trigonmetric functions; the use of complex numbers; and experimental counting statistics,
systematic and statistical errors, and the significance and use of error values in the scientific
literature.

Section 2

Chemical Crystallography

Objective is provide instruction on the methods and basis for determining low-molecular weight
crystal structures using X-ray Crystallography; to enable interpretative assessment of the results of
crystal structure analysis to be carried out; and to guide students through several actual analyses
using the SHELX-program suite implemented on Pentium PC's.

Electron Microscopy (with EM practicals)

Objective is to introduce the students to the basic fundamentals of electron microscopy as a useful
subsidiary technique for crystallographers; to explain and demonstrate the use of the electron
microscope; to provide examples of its application in materials science and macromolecular
structural biology.

Protein Crystallography

Objective is to teach the basics of modern protein crystallography using Web-based material; to
discuss the different levels of structure exhibited by proteins; to demonstrate the instrumentation,
steps, and methods used in protein crystallography with appropriate case studies; to introduce the
concept of non-crystallographic symmetry to protein crystallography.

Applied Crystallography

Objective is to give the students a few in-depth examples of the applications of materials and
solid-state chemical/physics crystallography in academic research, industrial research, and its
general use in the outside world.

Non-Crystalline Systems

Objective is to provide students with some insight into the techniques used to examine either
poorly-crystalline materials or totally non-crystalline materials and thus to provide a contrast with
techniques such as powder diffraction.

Crystallography at EPSRC central facilities
Objective is to provide students with a background to the radiation sources provided by EPSRC
central facilities, the type of diffraction experiments performed there, and an on-site experience.
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MSc Crystallography
Crystal Structures & Basic Symmetry
Aims & Objectives

The overall aim of this MSc module is to explain the description of a crystal structure in terms of atom
positions, unit cells, and crystal symmetry; and to relate the crystal symmetry to the symmetry observed
in a diffraction experiment, for symmetries up to and including primitive orthorhombic.

The objectives of each lecture are given below:

Lecture 1

To introduce the concept of simple crystal structures in terms of atom (or cation/anion) positions,
unit cells, and crystal symmetry;

To demonstrate how the symmetry observed in a diffraction experiment is related to that of the
crystal.

Lecture 2
To demonstrate that the packing of organic and organometallic molecules in a crystal follows
similar principles to those observed for inorganic compounds.

Lecture 3

To develop the concept of proper and improper rotation axes;

To show how they can be combined in a finite number of ways so as to form the 32
crystallographic point groups.

Lecture 4

To demonstrate how 2D space may be filled in a regular repeating manner;

To develop the concepts involved in the plane systems: oblique, rectangular, square, & hexagonal;
To demonstrate using optical diffraction the relationship between real and reciprocal space for the
17 plane groups.

Lecture 5

To describe the 7 crystal systems and the Bravais lattices;

To introduce the concept of the triclinic lattice and its lattice planes;

To give general equations relating d-spacing and the unit-cell parameters;
To show how these equations simplify according to crystal system

To introduce the triclinic space groups and their tables.

Lecture 6

To derive the 8 primitive monoclinic space groups;

To demonstrate the existence of alternative unit cells with different space group symbols, but
identical space group symmetry.

Lecture 7

To introduce the concept of systematic absences;

To show how these may be used to distinguish the space groups of different crystals for the 8
primitive monoclinic space groups;

Lecture 8

To derive the 5 centred monoclinic space groups;

To demonstrate the effect of a lattice centring in a diffraction experiment;

To demonstrate the effect of combining a lattice centring with a primitive space group.

Lecture 9
To introduce the primitive non-centrosymmetric orthorhombic space groups;
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To give the students practice at deriving space-group symmetry from single-crystal diffraction
data.

Lecture 10

To discuss the centrosymmetric orthorhombic space groups;

To teach the derivation of the symmetry operators from the space-group symbol;

To give students more practice at deriving space-group symmetry from single-crystal diffraction
data.

Lecture 11
To demonstrate how interatomic distances, bond angles, and torsion angles are calculated;
To give the students practice in carrying out the above calculation in a fast and efficient manner.

MSc Crystallography
Diffraction Techniques

Aims & Objectives

The aims of this module are: (1) to provide instruction on the theory and practice of methods for
recording crystal reciprocal lattices and measurement of the associated intensity values prior to structure
analysis; (2) to introduce methods of measuring and interpreting reciprocal lattice geometry for the
determination of unit cell dimensions, Laue symmetry and space group symmetry. The lecture course is
supplemented by intensive practicals.

The objectives of each lecture are given below:

Lecture 1
To derive Bragg's equation, introduce the Ewald sphere analogue and concept of the reciprocal
lattice. Problem solving and demonstration.

Lecture 2
To use basic techniques for the optical examination of crystal specimens using a polarising
microscope. Crystal mounting techniques for camera work and diffractometry.

Lecture 3
The oscillation camera. Design, recording techniques and symmetry observable and calculation of
crystal spacing. Indexing. Limitations of the method. Problem solving. Film measurements.

Lecture 4
The Weissenberg camera. Design, recording and interpretation of reciprocal lattice zero layers in
terms of unit cell spacings and symmetry. Film measurement and indexing.

Lecture 5
Upper level Weissenberg photography by equi-inclination technique. Calculation of settings,
symmetry observable and derived measurements. Problem solving and demonstration.

Lecture 6
Design of the 4-Circle Single Crystal Diffractomer. Crystal mounting, reflection scans, unit cell
calculation and orientation matrix assignment. Equi-inclination geometry.

Lecture 7

The Nonius CAD4 single crystal diffractometer. Kappa geometry. Data collection strategies. Psi
scans for empirical absorption correction. Data processing programmes. Practical involving
crystal mounting, orientation, unit cell and Laue symmetry assignment and data collection and
processing.
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Lecture 8

Design of the precession camera. Comparison with oscillation camera. Recording zero-layer
photographs of the reciprocal lattice. Unit cell calculations and observation of symmetry. Problem
solving and measurements.

Lecture 9

Recording upper-level precession photographs. Comparison with Weissenberg camera.
Observation of symmetry and determination of space group. Limitations of the method. Problems
and calculations.

Lecture 10

Laue photography. The use of white radiation. Simple indexing procedures and inherent practical
difficulties. Symmetry observable. Practicals, problems, calculations. Situations where Laue
method is applicable.

Lecture 11

Data collection strategies. Symmetry considerations. Approximate number of intensities in a data
set. Resolution. Data reduction procedures. Lorentz, polarization and absorption correction.
Indices of data quality and expected values in practice.

MSc Crystallography
Powder Diffraction

Aims & Objectives

The overall aim of this MSc module is to give the students a background to the instrumentation used for
powder diffraction, to illustrate the different uses of powder diffraction, and to give as much hands-on
experience of data collection, data interpretation, and structure refinement as possible within the time
allowed.

The objectives of each lecture are given below:

Lecture 1

To introduce the concept of diffraction from powdered crystalline materials;

To discuss the generation of laboratory and synchrotron X-rays with additional emphasis on
aspects relevant to powder diffraction;

To discuss the history of powder neutron diffraction;

To discuss the generation of reactor-based and pulsed source neutrons and to discuss the merits of
both for powder neutron diffraction.

Lecture 2

To demonstrate the in-house powder diffractometers to the class;

To emphasis the different geometries;

To point out the different components (source, monochromator, sample stage, and detectors);

To discuss the use of filters and monochromators and their application in powder diffraction;

To describe the different types of X-ray and neutron detector with a brief explanation of how they
work.

Lecture 3

To explain how good-quality powder samples are prepared;

To get the students to prepare powder samples in the laboratory;

To discuss powder diffractometer data acquisition and to relate this to experimental objectives
(qualitative versus quantitative analysis, structure refinement versus structure solution);
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To get each student to collect data on a different unknown binary misture using the PSD detector;
To discuss instrument calibration, errors, and standard samples.

Lecture 4

To explain the contents of the JCPDS database;

To demonstrate the use of the database by the Hanawalt search method;

To get the students to solve simple textbook problems using the teaching sub-set of the database.

Lecture 5

To teach the students how to visualise their data collected in lecture 3;

To get the students to estimate peak positions and intensities;

To give the students practice in phase identification from binary mixtures;
To demonstrate some of the problems involved in qualitative analysis.

Lecture 6

To explain how the d-spacings of the peaks are related to the unit cell parameters;

To show how these equations simply for higher-symmetry crystals;

To demonstrate how powder diffraction patterns of cubic materials may be indexed manually;

To give the students practice in manual indexing;

To illustrate how the interplanar spacing of layered materials may be obtained by simple indexing
of 00l peaks;

To briefly discuss the concepts used in various automatic computer indexing programs.

Lecture 7

To discuss the factors that determine peak intensity in powder diffraction;
To show the effect of symmetry on the peak multiplicity;

To discuss the factors effecting peak width;

To discuss peak shapes for different instrumental conditions;

To briefly mention instrument abberations and their effect on peak shape.

Lecture 8

To explain the concepts involved in the Rietveld method for the refinement of crystal strcutures
from powder data;

To give a slow step by step demonstration of the method using in-house software.

Lecture 9

To show how the Rietveld method can be taken a stage further to whole pattern fitting;
To demonstrate with examples the steps involved in structure solution from powder data;
To emphasise the difficulties and limitations of the method.

Lecture 10

To give the students hands-on experience of the Rietveld method using a variety of powder
diffraction data sets from different instruments;

To illustrate the importance of knowing the characteristics of the diffractometer used for the data
acquisition.

Lecture 11
To give the students hands-on experience of powder diffraction at both a synchrotron radiation
source (SRS) and a pulsed neutron source (RAL).
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MSc Crystallography
Advanced Symmetry
Aims & Objectives

The overall aim of this MSc module is to explain the salient points of higher-symmetry space groups,
namely those belonging to the tetragonal, trigonal, hexagonal, and cubic crystal systems.

The objectives of each lecture are given below:

e Lecturel
To explain the solution to symmetry problems set for the vacation;
To revise the basic principles involved for orthorhombic space groups;
To give students confidence in deriving space group information from single-crystal diffraction
data.

e Lecture2
To illustrate the additional symmetry elements present in centred orthorhombic space groups;
To discuss the concept of extended space-group symbols;
To teach the students how to deduce space-group symmetry from diffraction data of a crystal
possessing a centred lattice;
To introduce the concept of d-glide planes with reference to space groups Fdd2 and Fddd.

o Lecture3
To develop the concepts involved in tetragonal space groups belonging to the Laue class 4/m;
To briefly survey the higher-symmetry tetragonal space groups belonging to the Laue class
4/mmm;
To show how the two Laue classes may be distinguished in a diffraction experiment;
To introduce the concept of enantiomorphic pairs of space groups.

e Lecture4
To develop the concepts involved in cubic symmetry;
To discuss the differences between the two cubic Laue classes m-3 and m-3m.

e Lectureb
To introduce the concept of trigonal symmetry and the diamond-shaped unit cell associated with
it;
To introduce the symmetry operators resulting from threefold symmetry;
To introduce the concept of the reciprocal-space coordinates hkil;
To develop the concepts involved with the Laue classes -3m1 and -31m and to demonstrate the
relationship between them,;
To show how the different Laue classes may be distinguished in a diffraction experiment;
To introduce the concept of rhombohedral symmetry and the relationship between the R-centred
hexagonal and primitive rhombohedral unit cells;
To relate the rhombohedral and cubic unit cells.

o Lecture 6
To extend the concepts of trigonal symmetry to hexagonal space groups;
To show additional uses for hkil indices in hexagonal systems;
To discuss the differences between the two hexagonal Laue classes 6/m and 6/mmm.

o Lecture?7
To revise space-group symmetry from low to high symmetry;
To illustrate sub-group and super-group relationships;
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To very briefly discuss the concept of higher-symmetry systems;
To illustrate the latter with colour symmetry and magnetic spin.

MSc Crystallography
Chemical Crystallography
Aims & Objectives

The aims of this module are: (1) to provide instruction on the methods and basis for determining low
molecular weight crystal structures using X-ray Crystallography; (2) to enable interpretative assessment
of the results of crystal structure analysis to be carried out; and (3) to guide students through several
actual analyses using the SHELX-program suite implemented on Pentium PC's. An introduction to
Macromolecular Crystallography is provided at the end of the course in preparation for this module.
Having undertaken the course students should be prepared to undertake extended project work using the
methods covered in the course and are encouraged to do so at a later stage.

The objectives of each lecture are given below:

Lecture 1

To introduce the necessary concepts of diffraction theory in the context of single crystals. X-ray
scattering from a single atom and from arrays of atoms, leading up to the formulation of the
Structure Factor F(hkl) for centrosymmetric and non-centrosymmetric crystals.

Lecture 2

To introduce the concept and formulation of Fourier series as used in X-ray crystallography.
Practical aspects of electron density calculations and interpretation in structural terms. The phase
problem enunciated. To introduce the concept of the Patterson function, its calculation and
properties, in particular when a structure contains an outstandingly heavy atom.

Lecture 3

To demonstrate the use of SHELX programs for calculating the Patterson function for a heavy
atom containing crystal, and interpretation in terms of heavy atom positions. Hands-on use of the
program package. Centrosymmetric case. Calculation of molecular geometry and chemical
significance of bond lengths, bond angles and other geometrical features such as planarity.

Lecture 4
To continue with the analysis started in Lecture 3, to expand the structure using Fourier and
difference Fourier methods. Use of graphics programs to interpret the results.

Lecture 5
To repeat the ground covered in previous lectures for a moderatly complex non-centrosymmetrical
structure.

Lecture 6
To provide the theoretical basis of Direct Methods of stucture determination. Concept of and rules
for origin fixing. Practical examples for various centrosymmetric space groups.

Lecture 7

To intoduce the triple product sign relationship and expansion into the sigma2 formula. Symbolic
addition and multi-solution methods for phase determination. The use of figures of merit for
descrimination between phase sets.

Lecture 8
Practical applications of direct methods for structure solution. Use of SHELX-S and graphics
programs. Non-centrosymmetrical structures.
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Lecture 9

Expansion and completion of trial crystal structures from Patterson or direct methods. The use of
Fourier methods and least-squares refinement. Isotropic and anisotropic models for atomic
thermal vibrations. Pit-falls and precautions necessary in practice. Practicals and demonstrations.

Lecture 10
Methods for locating and/or calculating and refining H-atom positions. Determination of absolute
configuration. More practicals.

Lecture 11
Introduction to macromolecular Crystallography. Isomorphous replacement and molecular
replacement, basic concepts.

MSc Crystallography
Applied Crystallography
Aims & Objectives

The overall aim of this MSc module is to give the students a few in-depth examples of the applications of
materials and solid-state chemical/physics crystallography in academic research, industrial research, and
its general use in the outside world. The general aim is to be take examples mainly from materials and
solid-state chemistry/physics so as to provide a complimentary view to the application of crystallography
in structural molecular biology which is covered by the protein crystallography module.

The objectives of each lecture are given below:

Lecture 1

To illustrate the different types of crystal structures formed by inorganic oxides;

To show how structures may be classified according to structural type;

To introduce the concept of relating structure to physical properties;

To discuss the application of diffraction methods to the structure determination of high-
temperature superconductors;

To demonstrate the similarity in structure of the various high-temperature superconductors.

Lecture 2

To discuss the importance of the Si04 tetrahedron in the formation of different silicate mineral
structures;

To expand the concept of the relationship between structure and physical properties with reference
to the rock-forming silicate minerals;

To give the students a hands-on demonstration of the different optical properties of various
minerals using two different sources of granite.

Lecture 3

To continue the concept of the relationship between structure and physical properties with
reference to cements;

To discuss the different complimentary methods used to investigate cements.

Lecture 4 (Invited Lecturer)

To discuss the Cambridge Crystallographic Structural Database; what it contains; and how to use
1t;

To discuss how databases may be used to deduce information about the molecular interactions
between different chemical groups;

To give the students hands-on experience of the use of the Cambridge CSD.
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e Lectures 5 and 6 (Invited Lecturer)
To introduce the students to the concept of perfect crystals and crystal defects;
To show how they may be studied by X-ray topography;
To discuss the instrumentation required for X-ray topography;
To outline the principles involved in X-ray topography;
To illustrate X-ray topography using diamond and silicon crystals as examples;
To demonstrate the difference between the kinematic and dynamic approach to diffraction theory;
To introduce the students to the concepts involved in the dynamical theory.

e Lecture 7 (Invited Lecturer)
To discuss the structure and properties of zeolites;
To outline their importance in industrial processes;
To explain the limitations of diffraction in studying the behaviour of molecules within zeolites;
To briefly explain the concepts involved in the computer simulation of crystal structures;
To demonstrate how computer simulation and molecular graphics leads to a greater understanding
of how zeolites function.

e Lecture 8 (Invited Lecturer)
To explain the concept of a patent;
To discuss the importance of patents to the pharmaceutical industry;
To outline the crystallographic contents of patents;
To illustrate by example polymorphism in crystals;
To explain why patents are contested and how pattern diffraction is used to both defend and attack
patents in a court of law.

e Lecture9
To provide the students with a variety of practical examples of the use of electron microscopy for
the study and characterization of materials;
To briefly discuss the use of nano- and micro-technologies.

o Lectures 10 and 11
To provide the students with a background to the scientific methods used in the study of
archeological samples;
To briefly discuss the merits and disadvantages of the scientific methods available;
To show by illustration how forgeries are distinguished from the genuine objects;
To demonstrate how optical and electron microscopy can be used to examine metal samples;
To give the students hands-on experience in distinguishing between genuine and artificial metal
corrosion;

In addition, one of the objectives of the visit to EPSRC central facilities (SRS and RAL) is to provide
further examples of the application of the use of crystallography external to the home laboratory.
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MSc Crystallography
Non-Crystalline Systems

Aims & Objectives

The overall aim of these additional lectures to the MSc course is to provide some insight into the
techniques used to examine either poorly-crystalline materials or totally non-crystalline materials and thus
to provide a contrast with techniques such as powder diffraction.

The objectives of each lecture are given below:

Lecture 1

To explain the concept of liquid and glass structures;

To discuss the scattering instruments used to characterise these systems;
To show by example how limited structural information can be obtained.

Lecture 2

To remind the students about thermal motion in solids and its effect on diffraction data;

To explain why thermal diffuse scattering occurs;

To explain how the measurement of thermal diffuse scattering leads to useful information in
structural molecular biology.

Lecture 3

To introduce to non-biological polymers;

To briefly discuss the structure of colloids;

To describe small-angle diffractometers;

To explain how small-angle scattering techniques can be used to characterise the structure of
polymer and colloidal solutions;

To show with examples the use of neutron scattering for contrast variation studies.

Lecture 4 (Daresbury)

To briefly explain the concept of EXAFS as a tool for solid-state scientists;

To see the setup of an EXAFS scattering station at the Daresbury synchrotron;

To demonstrate the use of EXAFS as a complimentary scattering technique for the study of poorly
crystalline materials.
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Addendum 2: mid 1950’s (rejected) submission on crystallography by J.D. Bernal et
al to the Encyclopaedia Britannica. The article was rejected as too long but it
embodied the syllabus and intention of the Birkbeck College M.Sc. course in
crystallography.

Summarized comments between Alan Mackay and the newsletter editor about the article and
history: Bernal's bit is on the X-ray analysis of crystals and the last paragraph (p.828D) bears
perpetuation. The article was rejected as too long but it embodied the syllabus and intention of the M.Sc.
course in crystallography.

JDB is J.D. Bernal. Other authors: WAW - W. A. Wooster; JDHD - J.D.H. Donnay; LJS - L.J. Spencer.
ArFW - AF. Wells. 1 believe that instead of Bernal's article the Encyclopaedia Britannica had a much
shorter article by M. J. Burger.

The proof copy was copied (I think as Gestetner copies) and circulated to the M.Sc. class at the time to
accompany JDB's lectures which were, of course, much less systematic. There is always the story of the
student who came to Bernal after a lecture and said that is was so interesting that he could not take notes,
could he borrow JDB's own notes. Bernal handed over three words on the back of an envelope.

As this EB submission was used by J.D. Bernal as part of the original Birkbeck M.Sc. notes, attempts to
trace the article’s copyright status were performed via queries to the estate of J. D. Bernal. It is included
here as an addendum for its scientific history and scholarly value (with encouragement from J.D. Bernal’s
son, Mike Bernal) in this not-for-profit scientific publication.
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For modern developments see CoDES AND CIPHERS,

similar practices, see DIVINATION; HALLUCINATION; PSYCHICAL
RESEARCH ; SPIRITUALISM and allied articles.

CRYSTALLITE, a name given by Vogelsang to the micro-
scopic bodies occurring in many glassy igneous rocks, such as
obsidian, pitchstone and tachylyte. Though possessing no distinct
reaction on polarized light and often no recognizable crystallo-
graphic form, they are to be regarded as incipient crystals. The
larger bodies, often with good crystal form and evident double
refraction, are termed microlites. According to their shape and
structural arrangement crystallites are subdivided into globulites
(small globules), margarites (coalescing globules arranged in
rows), cumulites (cloudy aggregate of globules), and globo-
spherites (groups of globulites with a radiate arrangement). Other
crystallites assume thread-like forms (trichites) or appear as
elongated cylinders or rods (longulites, belonites, baculites).
When sufficiently large to be recognizable as mineral species
(microlites) they can usually be referred to felspar, pyroxene,
amphibole or iron oxides. Acicular microlites bearing divergent :
arborescent branches are termed scopulites. The pitchstones of
Arran are well known for the variety and beauty of their crystallite
and microlite constituents (amphibele). In the basaltic glasses
of Hawaii similar growths are formed of pyroxene.

CRYSTALLIZATION, the art of obtaining a substance in
the form of crystals. It is an important process in chemistry, since
it permits the purification of a substance or the separation of 3
the constituents of a mixture, Generally a substance is more 3
soluble in a solvent at a high temperature than at a low, and 3
consequently, if a boiling strong solution be allowed to cool, the - i
substance will separate in virtue of the diminished solubility. The
slower the cooling the larger and more perfect will be the crystals
formed. If, as sometimes occurs, such a solution refuses to
crystallize, the expedient of “Inoculating” the solution with a
minute crystal of the same substance, or with a similar substance,
may be adopted; shaking the solution, or the addition of a drop
of another solvent, may also occasion the desired result. “Frac-
tional crystallization” consists in repeatedly partially crystallizing
the salt content of a solution so as to separate the substances of
different solubilities. Examples are especially presented in the
study of the rare-earths. Other conditions under which crystals.
are formed are given in the article CRYSTALLOGRAPHY.,

CRYSTALLOGRAPHY. Few fields of science changed ' g
Yore in the first half of the 20th century than did crystallography, |
Z f’and none so extended th :

€ range of its application. Before 1912,
when Max von Laue’s discovery provided the key to the inner
structure of crystals, virtually nothing was known of the arrange-
ments of atoms in solid matter. The methods of chemistry op-

e e i
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erated on them only after they had been melted, vapourized, or
brought into solution. Even the science of crystallography itself,
though of substantial antiquity, had not progressed further than
measuring and registering the external faces of crystals. Its value
was mainly that of identifying and classifying minerals. Knowl-
edge of the properties of solids was a matter of practical testing
without a clue as to the underlying reasons and therefore without
the possibility of changing the properties except by repeated varia-
tions and trials. Sir Arthur Eddington could remark quite truly
in 1927 that more was known about the interior of a star than about
the interior of a table. .

Later the situation was entirely transformed. As a result of new
diffraction methods it became possible to determine the molecular
structure of any kind of solid, whether apparently crystalline or
not, and even to determine something of that of glasses and liquids.
The results of these analyses, begun by Sir William Bragg and his
son Sir Lawrence Bragg and carried on by armies of research
workers in nearly every country in the world, soon had the effect of
transforming many of the ideas of chemistry and mineralogy and
notably influencing geology and biology. In industry the practical
applications were quite as marked, particularly in metallurgy,
where X-ray diffraction became as essential a tool as the micro-
scope, and in the new industries of artificial fibres and plastics.
Indeed as there is practically no industry where the properties of
solids does not enter, the range of utility of the new crystallog-
raphy, after it had shown its powers in practice, rapidly increased.

The knowledge of the precise ways atoms are arranged in crystals
—their distance apart, the form of the regular geometrical patterns
they make in space—gave many new qualitative and quantitative
data to chemistry. The sizes of the different atoms and the lengths
of the bonds joining them were revealed. Indeed the new crystal-
lography furnished a microscope which, in competent hands, could
discern molecules, atoms and even the distribution of electrons.
These data were a valuable adjunct to the quantum theory in the
reinterpretation of chemical formulas and in establishing new ones
—notably that of penicillin. Inorganic chemistry—the chemis-
try of acids, bases and salts—was indeed largely rewritten in terms
of ions or electrically charged atoms. The complexities of mineral
chemistry, particularly of the silicates which constitute the bulk of
the earth’s crust, were unravelled as a result of crystallography.
The science of geochemistry, which offers clues to the distribution
of minerals in the earth, was largely built on a basis of crystal
structures. Even greater was the contribution of crystallography
to metallurgy. The composition of metals and alloys seemed to
defy all the rules of chemistry. New rules were found for them in
terms of relatively simple crystal structures. These same struc-
tures explained for the first time the plastic properties of metals
that enable them to be rolled and drawn, as well as the inner me-
Fhanism of many age-old processes such as annealing and temper-
ing.

In biology X-ray techniques revealed the fine structures of tis-
sues which were beyond the range of the microscope or even of the
electron microscope. These studies, because of their far grater
complexity, were still in their introductory stages in the 19508, but
already much was known of the structure of hard parts—cell walls,
hair, skin and tendons—and a start was being made with the attack
on the great central problem of protein structure.

The first of the three sections which follow, that on the morphol-
ogy of crystals, covers the field of classical crystallography but
explains the external shape and faces of crystals in terms of an un-
derlying structure. The second discusses the ways in which that
structure can be found and the types of structure found in different
kinds of matter; it is largely a treatise on crystal chemistry. The
third, on crystal physics, deals with the explanation of the proper-
ties of crystals—mechanical, optical and electrical—and some of
the practical applications of this knowledge. (J.D. Be.)

MORPHOLOGY OF CRYSTALS

Crystalline matter is characterized by periodicity in its inter-
atomic arrangement. A frieze is periodic, as it results from the
repetition of the motif at equal intervals or periods. A wallpaper
is an example of periodicity in the plane, the period being a square,

a rectangle or some other parallelogram. Crystalline matter is
periodic in three independent directions, the period being a cube
or some other parallelepiped. Crystallography even concerns itself
with the study of matter periodic in less than three dimensions
(e.g., fibres). The ideally perfect crystal is defined as a homoge-
neous portion of crystalline matter; real crystals, however, are
seldom rigorously homogeneous. The word homogeneity must be
taken here in the sense of periodic homogeneity, in contradistinc-
tion to statistical homogeneity ; the latter is the homogeneity of a
heap of sand, for instance. The following paragraphs will explain
the concept of periodicity.

Consider any point O on a wallpaper. Let A be a similar point,
closest to 0. Build the row of parameter OA. Let B be a node
outside the row 04, but as close to O as possible. Build the row
of parameter OB. Through the nodes of each row, and parallel to
the other one, pass a set of additional rows. All the nodes in the
plane are seen to lie at the intersections of these two sets of parallel
rows; they constitute a net, which is the geometric expression
of the periodicity of the wallpaper (periodicity in two independent
directions or diperiodicity). Any line passing through two nodes
contains a row; it is a row line (also-called a reticular line or a
lattice line). Because there is no node inside the parallelogram
built on OA and OB, the rows O4 and OB are said to be conjugate
and the parallelogram is a simple mesh. Other pairs of conjugate
rows would give other simple meshes, usually different in shape
but equal in size, This is easy to see, for, in order to cover a given
portion of the plane, as many simple meshes (of any one shape)
are needed as there are nodes in it. The area of the simple mesh is
therefore a constant; it is called the reticular area of the net. A
parallelogram built on nonconjugate rows is a multiple mesh:
double, triple, . . . or n9Ple, according as there are two, three, . . .
or # nodes per mesh. Any multiple mesh may be used as a period,
provided its multiplicity be stated, but the simple mesh is the small-
est period of the net.

Let the concept of periodicity be extended into three-dimensional
space. Starting again from any point O, build the row with the
smallest parameter OC. Then, outside the row OC, take two nodes
A and B as close to O as possible, but not in a straight line with
O. Build the net on 04, OB. Through all the nodes of the row OC
pass a set of additional nets parallel to O4AB. Likewise through
all the nodes of the rows OA4 and OB pass sets of nets parallel to
OBC and OC4, respectively. All the nodes in space are seen to lie
at the intersections of these three sets of parallel nets; they con-
stitute a lattice, which is the expression of triperiodicity. Any
plane passing through three nodes contains a net; it is a net plane
(also called a reticular plane or a lattice plane). Because there is
no node inside the parallelepiped built on OC, 04 and OB, these

rows are said to be conjugate and the parallelepiped is a simple cell. -

Other triplets of conjugate rows would give other simple cells,
usually different in shape but equal in size, since, in order to fill a
given portion of space, as many simple cells (of any one shape)
are needed as there are nodes in it. The volume of the simple cell
of a lattice is therefore a constant. A parallelepiped built on non-
conjugate rows is a multiple cell: double, triple, . . . or n"rle ac-
cording as there are two, three, . . . or # nodes per cell. Any mul-
tiple cell may be used as a period, provided its multiplicity be
stated, but the simple cell is the smallest period of the lattice.
The lattice is of fundamental importance in crystallography. It
was used as a structural hypothesis long before X-ray diffraction
experiments proved the distribution of matter in a crystal to be
triperiodic. Since 1912, as a result of Max von Laue’s celebrated
experiment, it is known that a crystal is built up of regularly re-
peating particles (ions, atoms or molecules), the unit of structure

being the motif or content of the cell (also called translation repeat PN
__or base). -
Histoty.—The word crystal is from the Gr. «ploralhos, mean-

ing clear ice (Lat. crystallum), a name which was also applied
to the clear transparent quartz (rock crystal) from the Alps, under
the belief that it had been formed from water by intense cold.
It was not until about the 17th century that the word was extended
to other bodies, either those found in nature or obtained by the
evaporation of a saline solution, which resembled rock crystal
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in being bounded by plane surfaces, and often also in their clear-
ness and transparency.

The first important step in the study of crystals was made by
Nicolaus Steno, the famous Danish physician, afterward bishop
of Titiopolis, who in his treatise De solido intra solidum naturaliter
contento (Florence, 1669; English transla-
tion, 1671) gave the results of his observa-
tions on crystals of quartz. He found that
although the faces of different crystals
vary considerably in shape and relative
size, yet the angles between similar pairs of
faces are always the same. He further
pointed out that the crystals must have
grown in a liquid by the addition of layers
of material upon the faces of a nucleus,
this nucleus having the form of a regular
six-sided prism terminated at each end by
a six-sided pyramid. The thickness of the
layers, though the same over each face, was
not necessarily the same on different faces,
but depended on the position of the faces
with respect to the surrounding liquid; hence the faces of the crys-
tal, though variable in shape and size, remained parallel to those
of the nucleus, and the angles between them constant. Robert
Hooke in his Micrographia (London, 1665) had previously noticed
the regularity of the minute quartz crystals found lining the cavi-
ties of flints and had suggested that they were built up of sphe-
roids. About the same time the double refraction and the rhom-
bohedral cleavage of crystals of calcite or Icelandspar were studied
by Erasmus Bartholinus (Experimenta crystolli Islandici disdia-
clastici, Copenhagen, 1669) and Christiaan Huygens ( Traité de la
lumiére, Leyden, 1690); the latter supposed, as did Hooke, that
the crystals were built up of spheroids. In 1695 Anthony van
Leeuwenhoek observed under the microscope that different forms
of crystals grow from the solutions of dif-
ferent salts. Andreas Libavius had indeed
much earlier, in 1597, pointed out that the
salts present in mineral waters could be
ascertained by an examination of the
shapes of the crystals left on evaporation
of the water; and Domenico Guglielmini
(Riflessioni filosoficke dedotte dalle figure
de dei sali, Padua, 1706) asserted that the
crystals of each salt had a shape of their fig. 2 —OCTAHEDRON
own with the plane angles of the faces BUILT up oF cuses
always the same.

The earliest treatise on crystallography is the Prodromus Crys-
tallographiace of M. A. Cappeller, published at Lucerne in 1723.
Crystals were mentioned in works on mineralogy and chemistry;
for instance, C. Linnaeus in his Systema Naturae (1735) described
about 40 common forms of crystals among minerals. It was not,
however, until the end of the 18th century that any real advances
were made, and the French crystallographers J. B. L. Romé de Lisle
and the abbé René Just Haiiy are rightly considered as the founders
of the science. Romé de Lisle (Essa: de
cristallographie, Paris, 1772; Cristallo-
graphie, ou description des formes propres
& tous les corps du régne mineral, Paris,
1783) made the important discovery that
the various shapes of crystals of the same
natural or artificial substance are all inti-
mately related to each other; and further,
by measuring the angles between the faces
of crystals with the goniometer (¢.v.), he
established the fundamental principle that
these angles are always the same for the
same kind of substance and are characteristic of it. Replacing by
single planes or groups of planes all the similar edges or solid
angles of a figure called the primitive form, he derived other re-
lated forms. Six kinds of primitive forms were distinguished:
the cube, the regular octahedron, the regular tetrahedron, a rhom-
bohedron, an octahedron with a rhombic base, and a double six-
sided pyramid. Onlv in the last three cam theares he oo oot pe o

FI6. 1.—HEXAGONAL
SCALENOHEDRON BUILT
UP OF RHOMBOHEDRA

Fi¢. 3.—AXES OF CoO-
ORDINATES
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in the angles: for example, the primitive octahedran of alum, nitre
and sugar were determined by Romé de Lisle to have angles of
110°%, 120° and 100° respectively. Haily in his Essai d’une théorie
sur la structure des crystaux (Paris, 1784 see also his treatises on
mineralogy and crystallography, 1801 and 1822) supported and
extended these views, but took for his primitive forms the figures
obtained by splitting crystals in their directions of easy fracture
or cleavage, which are always the same in the same kind of sub-
stance. Thus he found that all crystals of calcite (¢.v.), whatever

B c

FI6. 4.—DEVELOPMENT OF CRYSTAL FACES AS A CONSEQUENCE OF INTERNAL
CRYSTAL STRUCTURE

(A) faces develop parallel to nets; in primitive cubic lattice, the cube is most
frequent, followed by rhomb-dodecahedron (C) and octahedron (B)

their external form, could be reduced by cleavage to a rhombohe-
dron with interfacial angles of 75°. Further, by stacking together
a number of small rhombohedra of uniform size he was able, as
had been previously done by J. G. Gahn in 1773, to reconstruct the
various forms of calcite crystals. Fig. 1 shows a scalenchedron
built up of rhombohedra in this manner; and fig. 2 a regular octa-
hedron built up of cubic elements, such as are given by the cleav-
age of galena and rock salt.

The external surfaces of such a structure, with their steplike ar-
rangement, correspond to the plane faces of the crystal, and the
bricks may be considered so small as not to be separately visible..
By making the steps either one, two or three bricks in width and
one, two or three bricks in height, the various secondary faces on
the crystal are related to the primitive form or cleavage nucleus by
a law of whole numbers, and the angles between them can be ar-
rived at by mathematical calculation. By measuring with the
goniometer the inclinations of the secondary faces to those of the
primitive form, Hauy found that the secondary forms are always
related to the primitive form on crystals of numerous substances
in the manner indicated, and that the width and the height of a step
are always in a simple ratio, rarely exceeding that of 1:6. This laid
the foundation of the important “iaw of rational indices” of the
faces of crystals.

The German crystallographer C. S. Weiss (De indagando forma-
rum, crystallinarum charactere geometrico principali dissertatio,

Leipzig, 1809; Ubersichtliche Darstellung der verschiedenen natiir-
PO A S AP I S ST ~ ST S S S SN CNE S TNNC Y S
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Berliner Akad. der Wissensch., 1814-15) attacked the problem of
crystalline form from a purely geometrical point of view, without
reference to primitive forms or any theory of structure. The faces
of crystals were considered by their intercepts on co-ordinate axes,
which were drawn joining the opposite corners of certain forms;
and in this way the various primi-
tive forms of Hauy were grouped
into four classes, corresponding
to the four systems described be-
low under the names cubic, te-
tragonal, hexagonal and ortho-
rhombic. The same result was
arrived at independently by F.
Mohs, who further, in 1822, as-
serted the existence of two addi-
tional systems with oblique axes.
These two systems (monoclinic
FiG6. 5.—STEREOGRAPHIC PROJEC- and triclinic) were, however, con-
TION OF A CUBIC CRYSTAL sHowing Sidered by Weiss to be only hemi-
CUBE A, ocTaneproN © anp hedral or tetartohedral modifica-
RHOMB-DODECAHEDRON D tions of the orthorhombic system,

and they were not definitely es-
tablished until 1835 when the optical characters of the crystals
were found to be distinct. A system of notation to express the re-
lation of each face of a crystal to the co-ordinate axes of reference

was devised by Weiss, and other notations were proposed by F..

Mohs, A. Lévy (1825), C. F. Naumann (1826), and W. H. Miller
(Treatise on Crystallography, Cambridge, 1839). For simplicity
and utility in calculation the Millerian notation, which was first
suggested by W. Whewell in 1823, surpasses all others and is now
generally adopted, though those of Lévy and Naumann are still in
use.

Although the peculiar optical properties of Iceland-spar had
been much studied since 1669, it was not until much Jater that any
connection was traced between the optical characters of crystals
and their external form. In 1818 Sir David Brewster found that
crystals could be divided ontically into three classes, viz., isotropic,
uniaxial and biaxial, and that these classes corresponded with
Weiss’s four systems (crystals belonging to the cubic system being
fsotropic, those of the tetragonal and hexagonal being uniaxial, and
the orthorhombic being biaxial). Optically biaxial crystals were
afterward shown by J. F. W. Herschel and F. E. Neumann in 1822
and 1835 to be of three kinds, corresponding with the orthorhom-
bic, monoclinic and triclinic systems. It was, however, noticed by
Brewster himself that there are many apparent exceptions, and the
optical anomalies of crystals have been the subject of much study.
The intimate relations existing between various other physical
properties of crystals and their external form have subsequently
been gradually traced.

As a consequence of Haiiy’s law of rational intercepts, or, as it

is more often called, the law of rational in-

dices, it was proved by J. F. C. Hessel in

1830 that 32 types of symmetry are possi-
 ble in crystals. Hessel’s work remained

overlooked for 6o years, but the same im-

portant result was independently arrived at

by A. Bravais in 1849 and by A. Gadolin in

1867. The 14 different ways of repeating

a point by translations in space, the trans-
FIG. 6.—CLINOGRAPHIC lat.ior‘l groups, were established by A. BFa-
DRAWING OF A cupic Vvais in 1849. The 230 ways of arranging
CRYSTAL asymmetric objects in space, repeating

them by translations, rotations, reflections

and all combinations of these operations, were discovered during

the last decade of the 1gth century by E. S. Fedorov, A. Schoen-

flies and W. Barlow independently. The historical development

of the subject is treated in P. Groth, Entwicklungsgeschichte der
mineralogischen Wissenschaften (Berlin, 1926).

Sadsielalialollelalelalisialaleletiizlela

Some properties of matter do not depend on direction; they are
scalar properties. Others do; they are vectorial properties.

At any point a vectorial property may be represented by a vec-
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tor, the length of which varies with the direction. As one changes
from any direction to a neighbouring one, this variation in the
vector length may be gradual (the vectorial property is then con-
tinuous) or abrupt (the property is then called discontinuous).
The rate of growth of a crystal, for instance, is a discontinuous
vectorial property; it shows sharp minima in certain directions.
Some crystals (called euhedral) are bounded by plane faces per-
pendicular to these directions. Another discontinuous vectorial
property of a crystal is its cohesion. Some crystals break easily
along planes that are perpendicular to the direction of minimum
cohesion; such planes are called cleavage planes.

Faces, cleavage planes and other planes associated with discon-
tinuous vectorial properties in a crystal may be called crystal
planes. The fundamental fact, established by X-ray diffraction,
that crystal planes are parallel to nets in the crystal lattice accounts
for many of the observations of the early crystallographers. Since
an edge of a crystal is the intersection of adjacent faces, it is paral-
lel to a lattice row, which lies at the intersection of two nets.
oot
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Fi6. 7.~~GNOMONIC PROJECTION OF A CUBIC CRYSTAL

The first laws of crystallography deal with the relative inclina-
tions of faces to one another. Such angles are measured by means
of goniometers (g.v.).

FUNDAMENTAL LAWS AND CONCEPTS

Law of Constancy of Angles.—At a given temperature the.
angle between two faces of a-crystal is a constant because these
faces are parallel to two definite nets in the lattice, so that another
crystal of the same crystalline substance will show corresponding
faces parallel to the same two nets in the lattice. This law holds®
true, of course, for other crystal planes besides faces. The
angle between two edges is likewise constant because edges
are parallel to lattice rows, and this is true for other crystal
lines besides edges (for instance, the intersection lines of
cleavage planes).

The angles of a crystal, being characteristic of the substance,
serve as determinative criteria. Several methods of crystallo-
chemical analysis have been proposed (E. S. Fedorov, A.
Boldirev, T. V. Barker) for the identification of crystalline
compounds on which angles can be measured.

Law of Rationality.—Through any point taken inside the
crystal as the origin, pass lines parallel to three noncoplanar
edges (or other crystal lines); that is to say, three edges formed
by the intersection of three faces. Let these be the axes of co-
ordinates OX, OY, OZ fig. 3). Take a fourth face (called unit
face or parametral face) inclined on all three axes; let 4 BC be
a plane parallel to it. Let £, 7/, {’ be the angles (called direction
angles) which the normal to the unit face makes with the axes
of co-ordinates OX, OY, OZ, respectively. Take any fifth face
on the crystal and let £, 1, {, be the direction angles of its normal..
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It is a law of observation that the ratios of the quotients of

corresponding direction cosines are rational; i.e., wherc 4, k, I
cosf  cosy  cos{

B E(FE" ,a;;?,—h:k:l, (1)

are small integers, called the Miller indices of the face (kkl).
The symbol of the unit face is obviously (111), as seen from
the above equation.

It is known from geometry that the intercepts which a plane
cuts on the axes of co-ordinates are inversely proportional to
the direction cosines of its normal, so that it may be written

cosy’

1, I I
a.b.c—OA.OB'OC_(;)S—EI'COS’)]'.W (2)
Substituting (2) in (1), results in
acosE : bceosy :ccos{ = h i kil (3)
which can also be written
a b c
% cosE = F oSN = 1 cost. (4)

In this form, it is known as the fundamental formula. It is the
basis of crystallographic calculations.

Let OH, OK, OL designate the intercepts cut on the co-
ordinate axes by a plane parallel to the fifth face. In view of
the proportionality between the intercepts of a plane and the
direction cosines of its normal, (3) may be written

¢/OH : b/OK : ¢/OL = h :k:l (s5)
or

OH/a OK/b OL/¢c = 1/k:1/k:1/1(6)
or again

OH OK OL = a/k

bk i o/l (7)

The latter form is expressed: the inter-
cepts of any crystal face are proportional
to small submultiples of the intercepts a, b,
¢, of any plane parallel to the unit face.
Thus the intercepts of a face parallel to
A Be (fig. 3) are in the ratios 04 : OB :
Oe = a/1 : b/1 : ¢/2; such a face is
designated (112). A face parallel to fgC
has the symbol (231) since Of : Og :
OC=a/2 :b/3:¢c/(-1).

. In equation (7) reduce the fractions to-
the same denominator and multiply them
by their common denominator, which does
not alter their ratios, and obtain

OH : OK : OL = Fkla :
hkc = ea : fb : gc,

b :
(8)

where ¢, f, g are small integers, known as
the Weiss coefficients. This relation is ex-
pressed: any crystal face is parallel to a
plane whose intercepts are equal to small
multiples of the unit lengths a, b, ¢. This
form, of the law of rationality shows its
meaning in terms of the lattice. Indeed,
let g, b, ¢, be the three primitive transla-
tions of a lattice, then equation (8) means
that any crystal face is parallel to a strati-
fication of nets in the lattice. Moreover,
the first net away from the origin in the 9
stratification passes through three nodes Fi6. 8 AND 9.—CLINO-
H, K, L, not many parameters away from GRAPHIC DRAWINGS AND
the origin, so that the triangle HKL is ;'I‘QSOND?:‘;‘:{VS'::S OF A
small. The smallest mesh of the net is g g, actua|Lportrau;
either the parallelogram that is twice the Fig. 9, idealized drawing
triangle HKL, or a fraction thereof; con-

sequently the smallest mesh of the net is small. Let it be desig-
nated by S and let d represent the interplanar distance in the strati-
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fication of nets parallel to HKL. Then S.d = V, where V, the
volume of the smallest cell of the lattice, is a constant. A small
mesh in the net corresponds, therefore, to a large interplanar dis-
tance. The reticular meaning of the law of rationality is thus that
faces are parallel to stratifications of nets with large interplanar
’ distances (fig. 4).

Axial Elements.—The axial elements
serve to characterize a crystalline sub-
stance. They are the axial ratios, e : b :
¢, and the interaxial angles, a=YO0Z,
B=Z0X, y=XOV. The latter are ob-

. tained from goniometric measurements,
10 either directly or through calculations.
The axial ratios are given by equation (2)
provided the direction angles of the normal
to the unit face have been measured or
computed from other measured angles.
Then the Miller indices (%kl) of any face
are obtained from (4), provided the di-
i rection angles of its normal have been
measured or computed from measure-
ments.

Law of Bravais.—The law of Bravais
is a more precise form of Haliy’s law of rationality. The latter,
translated into reticular language, states that the faces which occur
on a crystal are parallel to nets with large interplanar distances.
This is true, in general, regardless of the choice of the co-ordinate
axes and unit face. The law of Bravais goes further; it states that
the faces which occur are precisely those parallel to the nets with
the largest interplanar distances, and the larger the interplanar
distance the more important the face. By “importance” is meant
the frequency with which a face occurs on various crystals of
the same crystalline substance and, to a lesser extent, the size
to which it usually grows. The choice of axial elements can be
guided by the law of Bravais; they can be chosen so that the law
holds true. This is not begging the question, however, as the law
resides in the very fact that it is possible almost always uniquely
to find such axial elements in all cases. The law of Bravais is
only a first approximation to the truth; it suffers exceptions.
Yet, in its imperfect form, it nearly always makes it possible
to select a unit cell that is the same as that found by X-ray dif-
fraction methods, namely, the cell that expresses the periodicity
of the crysfal structure.

Exceptions to the law of Bravais include the following: (1) The

FIG. 10 AND 11.—MAL-
FORMED OCTAHEDRA

FIG. 12.—SYMMETRY ELEMENTS IN POINT GROUP 4/m 3 2/m: THREE 4.
AXES, EACH NORMAL TO A MIRROR; FOUR 3-AXES; SIX 2-AXES, EACH NOR-
MAL TO A MIRROR

forms present on a crystal depend not only on factors within
the crystal, but on external factors as well (conditions of crystal-
lization). (2) The law holds for dominant forms only, even in
the most favourable cases. (3) Frequently the best lattice that
can be determined by the law of Bravais leads to an order of
importance not wholly satisfactory even for the dominant forms;
it may assign large interplanar distances to unknown or insignifi-
cant forms. (4) Complementary merohedral forms have the
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same interplanar distance, yet do not always show equal morph-
ological importance.

. Zones.—Faces intersecting along parallel edges are said to be
in a zone. Planes passed through the origin parallel to such faces

A B

Fi1G6. 13.—CELLS OF CUBIC LATTICES:.(A) PRIMITIVE; (B) BODY-CENTRED;
(C) FACE-CENTRED

will intersect along a straight line. The direction of this line
is called the zone axis. The plane perpendicular to the zone axis
contains the normals to the faces in the zone; it is called the
zone plane. Example: in a crystal of zircon (fig. 8 and g) the
eight faces of the two tetragonal prisms ¢ and m constitute a
zone with the vertical 4-axis as zone axis.

" Three faces, (kkl), (K'&'V) and (h"k"1”) will lie in a zone if
the determinant kkl/B'F'U/h"k"1” is equal to zero. The expan-
sion gives Weiss’s zone law, hu+kv+lw=o0, in which u=
BUr—U'k" v = UR" — W1",w = Kk” — E'h”. The symbol [uvw]
designates the zone axis; %, v, w being the trimetric co-ordinates
of a point which, joined to the origin, gives the zone axis. The
equation of the zone is symmetrical in %kl and wvw. It expresses
the condition for a face to lie in a given zone, or for a zone to
comprise a given face. Adding the indices of two faces, each to
each, gives the indices of a face in zone with and between the
given two faces. By this rule the indices of a face lying at the
intersection of two zones can be determined. Example: (311) in
fig. 7 lies at the intersection of the zones (210) (101) and (201)
(110).

Crystal Projections and Crystal Drawing.—The shapes and
relative sizes of the faces of a crystal being as a rule accidental,
depending only on the distance of the faces from the centre of the
crystal and not in their angular relations, it is often more con-
venient to consider only the directions of the normals to the
faces. For this purpose projections are drawn, with the aid of
which the zonal relations of a crystal are more readily studied
and calculations are simplified.

The kind of projection most extensively used is the stereo-
graphic projection. The crystal is considered to be placed inside
a sphere from the centre of which normals are drawn to all the
faces of the crystal. The points at which
these normals intersect the surface of the
sphere are called the poles of the faces, and
by these poles the positions of the faces
are fixed. The poles of all faces in the
same zone on the crystal will lie on a great
circle of the sphere, which is therefore
called a zone-circle. The calculation of the
angles between the normals of faces and
between zone-circles is then performed by
the ordinary methods of spherical trigo-
nometry. The stereographic projection,
however, represents the poles and zone-
circles on a plane and not on a spherical
surface. This is achieved by drawing lines
joining all the poles of the faces with the
north or south pole of the sphere and find-
ing their points of intersection with the plane of the equator inside
the primitive circle, the projection being represented on this plane.
In fig. 5 is shown the stereographic projection of a cubic crystal:
al, @2, etc., are the poles of the faces of the cube; o, 0%, etc., those
of the octahedron: and d!, d? etc., those of the rhomb-
dodecahedron. The straight lines and circular arcs are the projec-
tions on the equatorial plane of the great circles in which the nine
planes of symmetry intersect the sphere. A drawing of a crystal

FiG. 14 —RHOMBIC
PRISM AND PINACOID IN
TWO DIFFERENT POSI-
TIONS
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showing a combination of the cube, octahedron and rhomb-
dodecahedron is shown in fig. 6, in which the faces are lettered the
same as the corresponding poles in the projection. From the zone-
circles in the projection and the parallel edges in the drawing the
zonal relations of the faces are readily seen: thus [a'0'd®], a’d'o®],
[a%0'd?], etc., are zones. A stereographic projection of a rhombo-
hedral crystal is given in fig. 64.

Another kind of projection in common use is the gnomonic pro-
jection (fig. 7). Here the plane of projection is tangent to the
sphere, and normals to all the faces are drawn from the centre
of the sphere to intersect the plane of projection. In this case
all zones are represented by straight lines. Fig. 7 is the gnomonic
projection of a cubic crystal, the plane of projection being
tangent to the sphere at the pole of an octahedral face (111),
which is therefore in the centre of the projection. (In this
figure a left-handed system of co-ordinates is used.)

In drawing crystals the simple plans and elevations of descrip-
tive geometry (e.g., the plans in the lower part of fig. 8 and 9)

I sometimes have the advantage of showing
\‘J—Es the symmetry of a crystal, but they give
no idea of solidity. For instance, a cube
would be represented merely by a square,
and an octahedron by a square with lines
joining the opposite corners. True per-
spective drawings are never used in the
representation of crystals, since for show-
ing the zonal relations it is important to
15 preserve the parallelism of the edges. If,

however, the eye, or point of vision, is re-
garded as being at an infinite distance from

A" the object all the rays will be parallel, and
] edges which are parallel on the crystal will

be represented by parallel lines in the

drawing. The plane of the drawing which

i | b the parallel rays joining the corners of the

« crystal and the eye intersect may be either
perpendicular or oblique to the rays; in the
former case it is an orthographic drawing,
and in the latter a clinographic drawing.
Clinographic drawings have been used fre-
16 quently for representing crystals. In rep-
resenting, for example, a cubic crystal (fig.
6) a cube face ¢? is first placed parallel to
the plane on which the crystal is to be
projected and with one set of edges verti-
cal; the crystal is then turned through a
small angle about a vertical axis until a second cube face a* comes
into view, and the eye is then raised so that a third cube face o'
may be seen,

In order to obtain the corresponding orthographic drawing,
the eye is not raised; instead, the cube is rotated through a
small angle about a horizontal axis until the face @' becomes
visible. The projecting lines are then perpendicular to the plane
of projection, and the latter is no longer the face @°.

EXTERNAL SYMMETRY

Symmetry Operations.—A direction AB is either homopolar
or polar, according as the two senses in which it may be travelled
(4B and BA) are, or are not, ejuivalent. Certain crystals pos-
sess directions different from all others in the crystal; such a di-
rection is called a singular direction. A crystal direction may
be polar for one property and homopolar for another.

A crystal in which all directions are singular and polar with
respect to a certain property is said to be asymmetrical (or to
lack symmetry) in that property. A crystal in which not all
directions are singular and polar with respect to a given property
is said to be symmetrical (or to have symmetry) in that property.
In other words: in regard to the property considered, to any
nonsingular direction in a symmetrical crystal there exists one,
or more than one, equivalent direction. A singular direction
AB, if polar, has no equivalent direction; if homopolar, 4B is
equivalent with its counterdirection BA.

Fi6. 15.—RHOMBIC
PRISM AND PINACOID
Fi6. 16.—HYPERSTHENE
CRYSTAL
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By the symmetry of a crystal, with no qualification as to which
property is considered, is meant the symmetry common to all its
properties (the equivalence of directions must hold true for any
property). It is a law of observation that all crystals of the same
substance (same chemical compound and, in case of polymor-
phism, same modification) show the same symmetry. This is
the law of constancy of symmetry.

A natural crystal, because of accidental conditions of growth,
is often malformed in that physically simi-
lar faces have neither the same size nor Q
the same shape (fig. 10 and 11). In order to
emphasize equivalent directions, the sheaf
of face normals (passed through any one
point in the crystal) is substituted for the
crystal itself in the study of its symmetry.

A symmetrical crystal has been defined
by the fact that it possesses equivalent di-
rections or, if all its directions are singular,
that they are homopolar. An operation
which, applied to a symmetrical crystal,
brings every direction into coincidence
with an equivalent direction (the sense being taken into account
for polar directions) is called a symmetry operation. The ex-
pression “bringing the crystal to self-coincidence” is often used;
it is quite justifiable if, by crystal, is meant the sheaf of face
normals, for a symmetry operation brings every line of the
sheaf into coincidence with an equivalent line.

It is proved in geometry that there are only two different

—~—

Fi6G. 17.—TETRAGONAL
PRISM AND PINACOID

F1G. 18.—COMBINATIONS OF TETRAGONAL PRISMS AND DIPYRAMIDS

kinds of symmetry operations. The rotation around an axis is
the operation of the first kind. The rotatory inversion is the
operation of the second kind; it is a combination of a rotation
around an axis with an inversion through a point situated on the
axis. To invert a point P through a point C, join PC, extend an
equal length, CP'= PC, and find point P’. (Some authors pre-
fer to use the rotatory reflection as the operation of the second
kind. It is a combination of a rotation

with a reflection in a plane perpendicular to °

the rotation axis.)

Symmetry Elements.—If a symmetry
operation is applied 2, 3, ... # times in suc- m| m m
cession, the result is a symmetry operation,
for the crystal is thereby brought to self-
coincidence. Borrowing the terminology
from the mathematical theory of groups,
this is conveniently expressed: the powers
of a symmetry operation are symmetry op-
erations. Likewise if 2, 3, . . . # symmetry operations are ap-
plied in succession, the result is again self-coincidence. This is
what is meant by: products of symmetry operations are sym-
metry operations. This multiplication is associative. There
exists an identical operation which brings any figure back to its
original position. If an operation transforms a figure F into F/,
the operation required to transform F’ back into F is called its
inverse operation. All the powers of a given symmetry operation
constitute a symmetry element. There are two kinds of sym-
metry elements, corresponding to the two kinds of symmetry
operations.

Let w=360°-n be the smallest angle through which a given

FIG. 19.—HEXAGONAL
PRISM m AND PINACOID ¢
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crystal can be rotated about a straight line to be brought to self-
coincidence. All the powers of this rotation (that is to say the
rotations through w, 2w, . . . etc.) form a symmetry element called
a rotation axis of symmetry. (The straight line about which the
rotation takes place is also termed rotation axis.)

Consider now a rotatory inversion. Again, letw=360°-n be the
smallest angle through which the crystal is rotated in the course
of a rotatory inversion that brings it to self-coincidence. All the
powers of this rotatory inversion form a symmetry element called
an inversion axis of symmetry. (The straight line about which
the rotation takes place, combined with the point on that line
through which the inversion is effected, is also termed inversion
axis.)

In the international symmetry notation a rotation axis is rep-
resented by its period! z, and an inversion
axis by its period surmounted by a bar n
(pronounced “minus »,” “inversion #” or
“n bar”). For short, it is convenient to
speak of an n-axis for a rotation axis and a
n-axis for an inversion axis. An inversion
axis with an even period will be represented
by 2n.

It is proved, as a consequence of the law g .0 trRiGONAL DI-
of rationality, that the only rotation axes pyramip
possible in crystals are 1, 2, 3, 4, 6, and
that the only inversion axes possible in crystals are 1, 2, 3, 4, 6.

By means of stereographic projections (projecting a general
face and all its equivalent faces, created by the symmetry ele-
ment), it is easy to show that a 1-axis is equivalent to a centre,
that a 2-axis is equivalent to a mirror (m) perpendicular to the
axis, that a 3-axis is equivalent to the combination of a 3-axis
and a centre, that a 4-axis is irreducible, that a 6-axis could be
replaced by a 3-axis and a mirror perpendicular to it (6=3/m).
The independent symmetry elements are thus: the rotation axes,
the centre, the mirror and the 4-
axis. For convenience, the 6-axis
is usually considered a distinct
element.

Theorems on Symmetry.—
Definition—A singular axis is an
axis parallel to a singular direc-
tion.

Theorem I: No mirror can be
oblique to a singular axis, and
the only kind of axis compatible
with a singular axis is a 2-axis
perpendicular to it.

Theorem I1: Of the following
three elements of symmetry, an
evenfold rotation axis, a mirror
perpendicular to it, and the cen-
tre at their intersection, no two
can exist without the third.

Corollary: A rotation axis with an odd period cannot combine
with both a mirror perpendicular to it and the centre. (Other-
wise it would have an even period.)

Theorem III: A crystal that possesses an sm-axis and one
2-axis perpendicular to it possesses in all # such 2-axes, inter-
secting at equal angles (180°/#), homopolar and of two different
kinds if # is even, polar and of the same kind if # is odd.

Theorem I'V: A crystal that possesses an n-axis and one mirror
containing it possesses in all # such mirrors, intersecting in the
n-axis at equal angles (180°/#), homopolar and of two different
kinds if # is even, polar and of the same kind if # is odd.

- Theorem V: A crystal that possesses a zn-axis and either one
2-axis perpendicular to it, or a mirror containing it, possesses in
all # such 2-axes of the same kind and # such mirrors of the same
kind. The mirrors bisect the angles between the z-axes if # is
even; they contain the z-axes if # is odd. The mirrors and the
2-axes are homopolar or polar, according as # is even or odd.

F1G. 21.—RHOMBIC DIPYRAMIDS

_ 1Strictly speaking the period is 360°/n.
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Theorem VI: If a crystal possesses an n-axis, # 2-axes perpen-
dicular to it and one mirror containing it, bisecting the angle
between the 2-axes if # is even, containing a 2-axis if » is odd,
then the crystal possesses # such mirrors in all and the »-axis is
included in a 2n-axis.

Theorem VII: A 2n-axis is incompatible with either a mirror
perpendicular to it, or the centre.

A 4-axis leads to the group 4/m in both cases. A 6-axis and

: the centre would lead to 6/m. The inver-
sion axis would become a rotation axis.
. Adding a mirror perpendicular to a 6-axis
; has no meaning, since 6 already includes

such a mirror (6=3/m).

‘ Corollary: The only way in which a 2#n-
Lo 22 axis can combine is with # lateral 2-axes
: perpendicular to it and # mirrors contain-
ing it.

Theorem VIII: In the absence of any
singular axis, the only two combinations
of rotation axes possible in crystals are:
the axes of the octahedron (three 4-axes,
four 3-axes, six 2-axes) and those of the
tetrahedron (three 2-axes, four 3-axes).

(Proofs are omitted for lack of space.)

Possible Point Groups.—The problem
is to combine, in all compatible manners,
the following symmetry elements: axes
(rotation axes: 1, 2, 4, 3, 6; inversion axes: 4, 6), centre (1) and
mirror (m).

The method of derivation consists in establishing first all the
axes and possible combinations of axes, then in combining them
with the centre and mirrors. It is based on the dichotomous
principle.

Either there is a singular axis, or there is no singular axis.

1. A Singular Axis.—It is either a rotation axis », or an in-
version axis 2n.

A. The singular axis is a rotation axis #. It is either un-
combined or combined.
. 1. Rotation axis uncombined. Groups: 1, 2, 4, 3, 6.
E 2. Rotation axis combined. Either there is no other axis,
or there is at least another axis.
a. No other axis. Two possibilities:
Centre present: The axes 1 and 3 become 1 and 3, respectively;
each evenfold axis acquires a mirror perpendicular to it (Th. IT).
No other mirror is possible, for, with the
centre, it would create another evenfold
rotation axis (Th. II).
Groups 1, 2/m, 4/m, 3, 6/m.
No centre: Only mirrors that contain the
singular #n-axis are possible, for no mirror
can be oblique to it (Th. I), while a mirror
perpendicular to it would require the cen-
tre, if n is even (Th. IT), or transform it
into an inversion axis, if n=3 (3/m
. equivalent to 6). Each n-axis acquires n
mirrors containing it, and no other (Th. IV).

' Groups: m, 2mm, 4mm, 3m, 6mm.
B b. At least another axis. It must be a 2-axis perpen-
E dicular to the singular axis (Th. I). Each n-axis acquires

#n lateral 2-axes, and no other (Th. III). Two possibilities:
No centre: In this case, there can be no mirror. For a mirror
could only contain the singular n-axis. It would have to contain
a lateral 2-axis, or to bisect the angle between two lateral 2-axes;
otherwise it would, by reflection, create additional 2-axes. If %
is even, a mirror containing a lateral 2-axis would be perpendic-
ular to another z-axis, thus demanding the centre (Th. II), while
a mirror bisecting two successive lateral 2-axes would require
them to be alike, whereas they are of different kinds (Th. I1T).
If »=3, a mirror containing a z-axis would transform 3 into 6,
while a mirror bisecting two successive 2-axes would be perpen-
dicular to another 2-axis and create the centre (Th. IT).
Groups: 2, 222, 422, 32, 622.

i
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Centre present: The 3-axis becomes 3; each evenfold axis ac-

quires a mirror perpendicular to it (Th. IT). No other mirror is

possible, for, with the centre, it would create an additional even-
fold axis (Th. II).

Groups: 2/m, 2/m 2/m 2/m, 4/m 2/m 2/m, 3 2/m,

6/m 2/m 2/m.

B. The singular axis is an inversion axis 2#. It is either

uncombined or combined.

1. Inversion axis uncombined.

2. Inversion axis combined.

The only way in which a 2#x-axis can combine is with » lateral

2-axes perpendicular to it, and # mirrors through it (Th. VII).

Groups: 42m and 62m.

II. No Singular Axis.—The axes are either the tetrahedral
axes or the octahedral axes (Th. VIII).

1. Tetrahedral axes: 2 3. It is imperative to consider
two cases: either the 2-axes are not included in 4-axes, or
they are.

a. The 2-axes are not included in 4-axes. Two possi-

bilities: »

No centre: In this case, there can be no mirror. A mirror that
does not contain any of the 2-axes would, by reflection, create
additional 2-axes. A mirror that contains one 2-axis must bisect
the angle between the other two, which are alike, hence it would
transform the first 2-axis into a g-axis (Th. VI). A mirror con-
taining two 2-axes is perpendicular to the third, hence would de-
mand the centre (Th. II). Group: 2 3.
Centre present: The 3-axes become 3-axes; each 2-axis acquires
a mirror perpendicular to it (Th. IT). No other mirror is possible,
for, with the centre, it would create an additional evenfold axis
(Th. II). Group: 2/m 3.

b. The 2-axes are included in g4-axes. Only one possi-

bility:

The centre is excluded by the 4-axes (Th. VIII). Two 2-axes (in-
cluded in g-axes) are perpendicular to each 4-axis, hence they
demand two mirrors alternating (Th. V).
There are six mirrors in all, bisecting the
go° angles between the 4 axes. Any other
mirror would, by reflection, create addi-
tional 4-axes. Group: 4 3 m.

2. Octahedral axes: 4 3 2. The 2-
axes cannot be included in 4 axes be-
cause each 2-axis is perpendicular to a
plane containing one 4-axis, one 2-axis,
two 3-axes, and a 4-axis cannot be per-
pendicular to such a combination.
Two possibilities:

No centre: In this case, there can be no
mirror. A mirror containing none of the
4-axes would, by reflection, create addi-
tional 4-axes. A mirror containing one 4-axis must bisect the angle
between the other two, which are alike, and thus be perpendicular
to a 2-axis, thereby requiring the centre (Th. II). A mirror con-
taining two 4-axes is perpendicular to the third, hence would de-
mand the centre (Th. IT). Group: 4 3 2.
Centre present: The 3-axes become 3-axes; each evenfold rota-
tion axis acquires a mirror perpendicular to it (Th. II). No other
mirror is possible, for, with the centre, it would create an addi-
tional evenfold rotation axis (Th. II). Group: 4/m 3 2/m.
The results of the derivation are presented in tabular form.
TasLE 1.—Derivaiion of the 32 Point Groups

Groups: 4 and 6.

1
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Note that two groups have been found twice, namely 2 and
2/m. The reason for this is that a 1-axis, combined with a 2-axis,
is equivalent to a singular 2-axis alone. Notice that, on the first
horizontal row, 4 and 6 are placed after
2 and 3, respectively. This arrangement
emphasizes the fact that a 2-axis may
exist as such or as part of a 4-axis; like-
wise a 3-axis may be alone or included in
a 6-axis.

The symmetry elements of the group
4/m 3 2/m are shown in fig. 12.

CRYSTAL LATTICES, CRYSTAL
SYSTEMS AND CRYSTAL FORMS

All the symmetry elements of a lattice FI6. 26.—DIHEXAGONAL
(axes, mirrors, centre) can be made to pass PIFYRAMID
through one node. They consti-
tute the point-group symmetry of the lattice. There are seven
such lattice symmetries. Some authors base the definition of the
crystal systems on the symmetry of the lattice; they recognize
seven systems. The rhombohedral lattice (32/m) being isogonal
with the hexagonal lattice (6/m 2/m 2/m), the two can be grouped
into a single hexagonal system, so that only six systems are neces-
sary. More than one assemblage of points in space may have the
same lattice symmetry; such assemblages are called lattice modes.

A cubic lattice, for example, may belong to either one of three
modes: primitive, body-centred or face-centred (fig. 13). There
are in all 14 lattices, differing in either symmetry or mode, or both.
A crystal which possesses the same symmetry as its lattice is called
holohedral (or holosymmetric). A crystal .
whose symmetry is less than that of its
lattice is called merchedral; hemihedral,
tetartohedral or ogdohedral, as the number
of symmetry operations is 4, 1 or 4 that in
the corresponding holohedry.

All the physically similar faces on a crys-
tal constitute a form. A form that com-
pletely encloses space is called a closed
form; such a form can occur alone. Other
forms, called open forms, cannot occur
alone. Several forms occurring together
on a crystal constitute a combination. In
practice the symmetry of a crystal poly-
hedron is determined from a study of its
forms. Conversely one can predict which
forms can occur in any point group, similar faces being disposed
symmetrically about the various symmetry elements of the group.
This is most conveniently done by means of the stereographic
projection, as follows: The symmetry elements are plotted on the
projection; then a face is plotted in general position (i.e., neither
perpendicular to any mirror nor perpendicular to any axis of sym-
metry) ; then all the symmetry operations available in the group
are applied to the original face and the similar faces are thereby
obtained; this form, called the general form, has the largest num-
ber of faces a form may have in the group. Other faces, per-
pendicular to one or more than one symmetry element, are then
plotted and the corresponding forms are found in the same man-
ner; such forms are called special forms or limit forms. The num-
ber of faces of a special form is a submultiple of the number of
faces of the general form, a fact which is easily understood, for a
face that is perpendicular to a mirror is reflected into itself and
therefore does not give rise to any additional face. Crystallogra-
phers also discriminate between invariable forms, which always
have the same shape, and variable forms, which may show more
than one shape, depending on the inclination of the faces to the co-
ordinate axes.

The most satisfactory method of naming forms is based on
geometrical principles, the name of a form being independent of the
position of its faces with respect to the axes of co-ordinates. There
are 47 different forms. A form composed of a single face is called
a monohedron (or pedion). Two intersecting faces constitute a

28
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dihedron (or sphenoid, gonioid or dome), whereas two parallel
faces are a pinacoid. Similar faces in a zone constitute a prism;
prisms are distinguished according to the shape of their cross sec-
tion as trigonal, rhombic (fig. 14 and 13), tetragonal (fig. 17),
hexagonal (fig. 19), ditrigonal, ditetragonal, dihexagonal. A pyra-
mid consists of faces equally inclined on the vertical. A dipyramid
is a double-ended form looking like two pyramids end to end, one
being the reflection of the other in a mirror. .
Pyramids and dipyramids (fig. 20, 21, 22,
23, 24, 25 and 26) are distinguished accord-
ing to their cross section, like the prisms.
A rhombohedron (fig. 27 and 28) is a form
with six faces which can be obtained by
placing two trigonal pyramids end to end
and rotating one with respect to the other
about the 3-axis through 60°. A rhombo-
hedron looks like a distorted cube; its
faces are rhombs instead of squares. Two
rhombic pyramids placed end to end, one of them being rotated
with respect to the other about the 2-axis through one-half the pe-
riod (i.e., through go®), give a form known as a tetragonal scaleno-
hedron (fig. 29) ; it has eight faces, in the shape of scalene triangles,
meeting in four equal lateral edges in zigzag. The hexagonal scale-
nohedron (fig. 30) is obtained as the tetragonal one, except that it
is necessary to start with two ditrigonal pyramids and rotate one
through 60° with respect to the other; this form has six equal
lateral edges. A disphenoid look like two sphenoids end to end;
if one of them is rotated with respect to the other, about the 2-axis,
through half the period (i.e., through go°), the form is called te-
tragonal disphenoid (fig. 31), from the shape of its cross section;
if one of the original sphenoids is turned with respect to the other,
about the 2-axis, through an angle different from go° so that the
cross section becomes a rhomb, the form is called rhombic disphe--
noid (Ag. 32). A trapezohedron is obtained by placing two pyra-
mids end to end, and rotating one of them with respect to the other,.
about the axis, through an angle different from one-half the period.
Trapezohedra are distinguished as trigonal (fig. 3 3), tetragonal and
hexagonal, according to the kind of pyramid that is used as a start-
ing point. A trigonal trapezohedron has six faces meeting in six
lateral edges in zigzag, three long ones and three short ones.

The hexahedron (or cube), the octahedron and the tetrahedron
(fig. 34 and 38) are three of the regular solids of geometry. The
octahedron may be conceived as being obtained from the cube by
truncating the eight corners (fig. 35 and 36). The cube would
likewise be obtained by truncating the cor-
ners of the octahedron (fig. 37), or by
truncating the edges of the tetrahedron
(fig. 39). The rhomb-dodecahedron (fig.
40), which has 12 rhombic faces, is ob-
tained from the cube or the octahedron by
truncation of the edges (fig. 6 and 41). Re-
placing the faces of a hexahedron by low
tetragonal pyramids gives a tetrahexahe-
dron (fig. 42), in which the edges or a cube
are still visible. Replacing the faces of a
hexahedron by low dihedra gives a dihexa-
hedron (or pentagon-dodecahedron or py-
ritohedron) (fig. 43), in which the edges of
the cube are no longer visible. Replacing
the faces of a dihexahedron by low dihedra
gives a didodecahedron (or diploid) (fig.
44). Replacing the faces of an octahedron .
by low trigonal pyramids gives a form with 24 faces; accordlr_lg to
the number of sides in each face, the form is called trigon-
trioctahedron (or trisoctahedron) (fig. 45 and 46), tetragon-
trioctahedron (or trapezohedron) (fig. 47 and 48), pentagon-
trioctahedron (or gyroid) (fig. 49); the edges of the original
octahedron are still visible in the trigon-trioctahedron. Likewi§e,
it is possible to visualize the following forms obtained by modifi-
cations of the tetrahedron: trigon-tritetrahedron (or tristetrahe-
dron) (fig. 50), tetragon-tritetrahedron (or deltohedron) (fig. 51),
pentagon-tritetrahedron (or tetartoid) (fig. 52); the edges of the

Fi16. 29.—TETRAGONAL
SCALENOHEDRON

FiG. 30.—HEXAGONAL
SCALENOHEDRON
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original tetrahedron are visible only in the trigon-tritetrahedron.
Replacing by low ditrigonal pyramids the faces of an octahedron
or a tetrahedron gives rise to a hexaoctahedron (fig. 53 and 54) or
to a hexatetrahedron (fig. 53).

Triclinic System.—The triclinic lattice has only one mode,
primitive. The cell is a doubly oblique parallelepiped built on three
conjugate rows. It may be advantageous in certain cases to use a

multiple cell, but it is never imperative to
do so. The conventional cell according to
Charles E. Delaunay is built on the short-
est three lattice translations that enable all
three angles to be nonacute (they are not
necessarily the shortest three noncoplanar

translations); the cell edges should be
named ¢, @, b, in order of increasing
lengths. The axial cross should be right-
Fig. 31.—TETRAGONAL handed.
DISPHENOIDS Point Group r—Holohedry. There is

only a centre of symmetry. All forms are
pinacoids. Paul Groth’s Chemische Krystallographie lists 706 sub-
stances in this point group, 220 of which are inorganic and 486
organic.

Monoclinic System.—The 2-axis of the lattice is usually taken
as the b-axis. The shortest two translations in the net perpendicu-
lar to the b-axis are taken as ¢ and a, with ¢ smaller than a. The

-angle @3 is taken obtuse; the other two interaxial angles are right
angles (fig. 56). The cell may be primitive (P) or base-centred
(€), which means that there is an additional node in the centre of
the ¢ face in every cell of the lattice. In order to comply with the
convention ¢< g, it may be necessary to centre another face (4)

or to centre the cell itself (7); in each case,
the centring should be explicitly stated.

Point Group 2/m—Holohedry. The
general form {Zkl} is a rhombic prism.
The only limit forms are the {%ol} pina-
coids and the {o10} pinacoid. Groth lists
2,786 examples, 287 inorganic and 2,499
organic. Example: augite (fig. 57).

Point Group 2 —Axial hemihedry. The

general forms {kkl} are dihedra. The
Fi6. 32.—RHOMBIC DI. {#ol} forms are pinacoids; {oro} and
SPHENOID {o1o} are monohedra. Groth lists 332 ex-

amples, 15 inorganic and 317 organic.
58 shows two crystals of tartaric acid.

Poiat Group m.— Antihemihedry. The general forms {hkl} are
dihedra. The {kol} forms are monohedra. There is one pinacoid,
{oro}. Groth lists 21 examples, 8 inorganic and 13 organic.

Orthorhombic System.—The cell is a rectangular parallele-
piped. The three symmetry directions are chosen as axial direc-
tions; a symmetry direction, being either a symmetry axis or the
perpendicular to a mirror or both, is always
a row line in the lattice. The axes are called
¢, ¢, b in the order of increasing lattice
translations. The three interaxial angles
are equal to go®. The lattice mode is either
primitive (P), one-face-centred (4, B or
C), body-centred (I) or all-face-centred
(F).

Point Group 2/m z/m 2/m —Holohe-
dry. The general form {#%kl} is a rhombic
dipyramid (fig. 21). When one of the Mil-
ler indices is equal to zero the form is a
rhombic prisms (figs. 14 and 15): {okl}, {kol}, {kko}. There are
three pinacoids: {roo}, {010}, {oor}. Groth lists 915 examples,
419 inorganic and 496 organic.

Point Group 2 2 2.—Holoaxial hemihedry. The general form
{kkl} is a rhombic disphenoid (fig. 32). The other forms are the
same as in the point group 2/m 2/m 2/m. Groth lists 429
examples, 15 inorganic and 414 organic.

Point Group 2 m m (or m 2 m or m m 2).
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The 2-axis which lies at the intersection of the two mirrors may
be the a-axis (2 m m), the b-axis (m 2 m) or the c-axis (m m 2), as
a consequence of the conventional rule
c<a<b. In thesetting 2 mm, {kki} and
{ kkl} are rhombic pyramids; {kol} and
{hol}, {hko} and {kko} are dihedra; {too}
and {100} are monohedra. In the set-
ting m 2 m, {kkl} and {kkl} are rhombic
pyramids; {okl} and {oki}, {hko} and
{hko} are dihedra; {o1o} and {oro} are
monohedra. In the setting m m 2, {kkl}
and { kkl} are rhombic pyramids; {okl} and {okl}, { hol} and { hol}
are dihedra; {oor} and {oo1} are monohedra. All other forms
are the same as in 2/m 2/m 2/m. Groth lists 57 examples, 20
inorganic and 37 organic. Hemimorphite (ZnsSi;0;(OH),-H.0)
is shown in fig. 6o in setting m m 2.

Tetragonal System.—The smallest cell is used. The 4-axis of
the lattice is taken as ¢, the edges of the cell are @, and as
(a1=a,). The three interaxial angles are equal to go°. The
lattice mode may be primitive (P) or body-centred (I).

Point Group 4/m 2/m z2/m.—Holohedry. The forms are as
follows (h<k):

FiG. 34 —TETRAHEDRON

{hkl} ditetragonal dipyramid (fig. 23); gl
{hko} ditetragonal prism;
{okl} tetragonal dipyramid (fig. 60 and 61); . ;
{hhi} tetragonal dipyramid (fig. 60 and 61);
{oo1} pinacoid (fig. 17);

{oro} tetragonal prism (fig. 18);

{110} tetragonal prism (fig. 17).

Groth lists 53 examples, 48 inorganic and 5 organic.

Point Group 4 2z 2.—Holoaxial hemihedry. The general form
{hkl} is a tetragonal trapezohedron. The other forms are the
same as in 4/m 2/m 2/m. Groth lists 20 examples, 1 inorganic
and 19 organic.

Point Group 4 m m.—Polar antihemihedry. The forms dif-

ferent from those in 4/m 2/m 2/m are:

N

{hkl}, ditetragonal pyramid; {okl}, tetra-
gonal pyramid; {kkl}, tetragonal pyra-
mid; {oor}, monohedron. Groth gives
three examples, all of them organic.

Point Group 4 2 m (or 4 m 2).—Homo-

/N polar antihemihedry, The only forms that
35 are different from the holohedral forms
are: {hkl}, tetragonal scalenohedron;
{okl} (in setting 4 m 2) and {Akl} (in
setting 4 2 m), tetragonal disphenoids.
Groth lists 1g examples, 18 inorganic and
1 organi¢. Chalcopyrite (CuFeS,), shown
in fig. 62, is a combination of two tetra-
gonal disphenoids (P and P’), two tetra-
gonal dipyramids (b and ¢) and the pina-
coid (a).

Point  Group 4/m.—Parahemihedry.
The general form {kZkl} is a tetragonal
dipyramid, {kko} is a tetragonal prism.
All other forms are the same as in 4/m
2/m 2/m. Groth lsts 18 examples, 10 inorganic and 8 organic.
Example: fergusonite (fig. 63).

Point Group 4.—Polar tetartohedry. {hkl} isa tetragonal pyra-
mid; {kko}, a tetragonal prism (as in 4/m); {o1o} and {110},
tetragonal prisms (as in 4/m 2/m 2/m). The other forms are the
same as in 4 m m. Groth gives four examples, three inorganic
and one organic.

Point Group 4.—Homopolar tetartohedry. {kkl} is a tetrago-
nal disphenoid; {kko}, a tetragonal prism (as in 4/m); {okl}
and { khl}, tetragonal disphenoids. The other forms are the same
as in 4/m 2/m 2/m Groth gives one inorganic example.
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Hexagonal System.—The smallest cell of the primitive hex-
agonal lattice is a 120° rhombic prism. The 6-axis is placed verti-
cally as the ¢-axis. The horizontal edges of the cell are a; and a.
(a1=as), enclosing angle ¥=120°. The other angles are equal to
90°. A superabundant axis of co-ordinate, as, bisects the angle
between a; and a;. The Miller indices referred to such a set of
.axes are four in number; they are written, for instance, {hkil},
where the first three refer to the hori-
zontal axes a1, as, a3 and the last one to
the vertical axis ¢. From the construction
of the horizontal axes it follows that the
sum of the first three indices is zera, b +
k+i=oori= —(h+ k).

The primitive (hexagonal) lattice mode
is the only one possible in the seven point
groups whose symmetry symbols begin
with 6 or 6; it is also possible in the five
trigonal point groups (those whose sym-
metry symbols begin with 3 or 3), where the rhombohedral lat-
tice mode is another possibility. '

The rhombohedral mode may be obtained by adding two nodes
per cell, at points 1/3 2/3 2/3 and 2/3 1/3 1/3. The above
Bravais axes of co-ordinates can still be used. Some authors pre-
fer the Miller axes, a1, s, ¢, which are the three lower edges of
a rhombohedral primitive cell. (They should never be used, how-
ever, if the lattice mode is not rhombohedral.) They are inclined
1o one another at equal oblique angles; they are equally inclined
to the vertical axis; they are of equal length (a';=a’y=a';). The
interaxial angle is designated by «; it is the only axial element.
The face symbols on fig. 64 are referred to Miller axes.

Point Group 6/m 2/m z/m.—Holohedry. The list of forms
follows (h>k):

{ hRil} dihexagonal dipyramid (fig. 26);

‘FIG. 37.—OCTAHEDRON
TRUNCATED BY CUBE

{hkio}  dihexagonal prism;

{hohl}  hexagonal dipyramid (fig. 24);
{h.h.2h.l} hexagonal dipyramid;

{ooor}  pinacoid;

{1010}  hexagonal prism;

{1rzo}  hexagonal prism.

Groth lists 14 examples, all inorganic.

Point Group 6 2 2~~Holoaxial hemi-
hedry. The form {kkil} is a hexagonal
trapezohedron. All other forms are the
same as in 6/m 2/m 2/m. Groth gives six
organic substances.

Point Group 6 m m.—Polar antihem-
ilhedry. The following forms differ from
the holohedral: {Aki}, dihexagonal pyr-

- " amid; {hokl} and {h.h.2h.l}, hexagonal
pyramids; {oooi}, monohedron. Groth
gives six inorganic substances.

Point Group 6 2 m (or 6 m 2).—Crys-
tals of this homopolar antihemihedry
may be referred to two settings, accord-
ing as the 2-axes or the normals to the
mirrors are parallel to the axes of co-ord-

e inates (i.e., the horizontal edges of the

39 smallest cell). The forms different from

Fic. 3s.—comBINATION holohedral forms are as follows. In the

OF TWO TETRAHEDRA seting 6 2 m : {hkil}, ditrigonal dipyra-

:;?J.N::'I:ST::RCA::ERON mid; {kkio}, ditrigonal prism; {k.k.2h.1},

trigonal dipyramid; {1120}, trigonal

prism. In the setting 6 m 2 : kkil , di-

trigonal dipyramid; {kkio}, ditrigonal prism; {kokl}, trigonal

dipyramid; {ro1o}, trigonal prism. Groth gives only one exam-
ple, inorganic.

Point Group 6/m.—Only two forms of this hexagyre para-

hemihedry are different from the holohedral: {Akil} is a hexago-
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nal dipyramid and {kkio} is a hexagonal prism. Groth gives
seven substances, all inorganic.

Point Group 6.—Polar hexagyre antitetartohedry. The general
form {kkil} is a hexagonal pyramid; { hk7o} is a hexagonal prism
(as in 6/m); {hok!} and {h.h.2hl} are
hexagonal pyramids and {ooo1} is a mon-
ohedron (as in 6 m m); other forms are
the same as in the holohedry. Groth
lists 11 examples, 6 of which are inor-
ganic.

Point Group 6.—Homopolar antite-
tartohedry. The general form {kkil} is a
trigonal dipyramid (fig. 20); {kkio} is a
trigonal prism; {kokl} and {1010} are
the same as in 6 m 2; {h.h.2hl} and
{1120} are the same as in 6 2 m; {ooor}
is the same as in 6/m 2/m 2/m. Groth
gives no example of this group.

Point Group 32/m 1 (or 3 1 2/m).—Tri-
gyre parahemihedry of the hexagonal
lattice. Holohedry of the rhombohedral 4
lattice. The forms different from those in g5 40 —rHOMB-DODE.
the hexagonal holohedry are: {%ki’}, hex- canebron
agonal scalenohedron (in both settings); FIG. 41.—OCTAHEDRON
{hohl}, rhombohedron (in setting 3 2/m TRUNCATED BY RHOMB-
1); {h.h.2h.l}, rhombohedron (in setting POPEGAHEDRON
3 1 2/m). The first setting is always used in the rhombohedral
holohedry, where the forms are the same as above. Some
forms are complementary in the hexagonal trigyre parahemi-
hedry; e.g., the positive and negative hexagonal scalenohedra,
{hkil} and {khil}, but they are distinct forms in the rhombohe-
dral holohedry. The same is true for positive and negative
rhombohedra, {kokl} and {okkl}. Groth B}
lists 58 examples, 50 inorganic and 8
organic.

Point Group 321 (or 3 1 2).—Holo-
axial tetartohedry of the hexagonal lat-
tice. Holoaxial hemihedry of the rhombo-
hedral lattice. The general form is a trig-
onal trapezohedron (in both settings).
The other forms are the same as in 6/ Fig. 42.—cUBE MODI-
2/m 2/m, except as follows. In setting FIED BY TETRAHEXAHED-
3 2 1: {hkio}, {hh2hl}, {1120} as in RON
6 2 m; {hohl} asin 3 2/m 1. In setting
3 1 2: {hkio}, {hohl}, {1010} as in 6 m 2; {k.h.2hl} as in 3
1 2/m. Groth lists 18 examples, 7 inorganic and 11 organic.

Point Group 3 m 1 (or 3 1 m).—Polar trigyre antitetartohedry
of the hexagonal lattice. Antihemihedry of the rhombohedral lat-
tice. The general form is a ditrigonal pyramid (in both settings);
{hoh!} in setting 3 m 1 and {k.h.2h.1} in setting 3 1 m are trigonal
pyramids. The other forms are the same as in other groups, as
follows. In setting 3 m 1 : {kkio} and {1010} as in 6 m 2;
{h.h.2h.1} and {ooo1} asin 6 m m; {1120} asin 6/m 2/m 2/m. In
setting 3 1 m; {kkio} and {1120} asin 6 2 m; { hohi} and {ocor}
asin 6 m m; { 1010} as in 6/m 2/m 2/m. Groth lists 14 examples,
13 inorganic and 1 organic. Example: tourmaline (fig. 65).

Point Group 3.—Paratetartohedry of the hexagonal lattice.
Parahemihedry of the rhombohedral lattice. The general form is
arhombohedron. The other forms are the same asin 6/m 2/m 2/m,
except as follows: {kkio}, as in 6/m; {kokl}, as in 3 2/m 1;
{A.h.2hl}, as in 3 1 2/m. Groth gives four examples, one inor-
ganic and three organic. Example: dioptase (fig. 66).

Point Group 3.—Ogdohedry of the hexagonal lattice. Tetarto-
hedry of the rhombohedral lattice. The general form is a trigonal
pyramid. The other forms are the same as in other groups, as
follows: {kkio}, as in 6; {hohl}, {coco1}, {1010}, as in 3 m 1;
{h.h.2hl}, {ooor}, {1120}, as in 3 1 m. Groth gives two ex-
amples, one inorganic and one organic.

e
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TIsometric (or Cubic) System.—The unit cell is a cube. The
edges of the cube are fixed by symmetry; they are parallel to
the 4-axes of the lattice. Three lattice modes are possible:
primitive (P), body-centred (I) and face-centred (F). No axial
elements can be given for an isometric crystal; all crystals in
this system have the same interfacial angles.

Point Group 4/m 3 2/m.—Holohedry. The forms are as follows
(h<k<I): {hkl}, hexaoctahedron; {okl},
tetrahexahedron; {khl}, tetragon-triocta-
hedron; {hkkk}, trigon-trioctahedron;
{111}, octahedron; {or1}, rhomb-dodec-
ahedron; {oor}, hexahedron (or cube).
Groth lists 19 examples, all of them inor-
ganic.

43 Point Group 4 3 2.—Holoaxial hemihe-
dry. The general form {kkl} is a penta-
gon-trioctahedron; the other forms are
the same as in 4/m 3 2/m. Groth lists 12
examples, all of them inorganic.

Point Group 4 3 m.—Antihemihedry.
The following forms differ from the cor-
44 responding forms in 4/m 3 2/m: {hkl},
FiG. 43.—DIHEXAHED- hexa-tetrahedron; {#hl}, trigon-tritetra-
RON OR PENTAGON-DODE- hedron; {kkk}, tetragon-tri-tetrahedron;
CAHEDRON {rrr}, tetrahedron. Groth gives seven
FiG. 44.—DIDODECAHED- . . : .
RON examples, six of which are inorganic.
Point Group 2/m 3.—Parahemihedry.
The general form {kki} is a didodecahedron and {okl} is a
dihexahedron. All other forms are the same as in 4/m 3 2/m.
Groth gives nine examples, eight of which are inorganic.

Point Group 2 3.—Tetartohedry. The general form {kkl} is a
pentagon-tritetrahedron; {okl} is the same as in 2/ m 3;{khl},
{hkk} and {111} are the same as in 4 3 m; {o11} and {oor} are
the same as in 4/m 3 2/m. Groth lists eight examples, seven of
which are inorganic.

INTERNAL SYMMETRY

In the crystal structure the cell is repeated by the translations
of the lattice or translation group. Matter inside a cell, however,
is arranged in a symmetrical manner, the symmetry operations in-
clude translation combined with either a rotation (screw rotation)

or a reflection (glide reflection). Two new
symmetry elements thus appear in the
study of the internal symmetry of crystals,
the screw axis (fig. 67) and the glide plane
(fig. 68). By combining all the symmetry
operations in all possible ways, the 230
space groups are found. By considering
45 screw rotations only (and not glide reflec-
tions), only 65 of these groups are found
(L. Sohncke, 1879).

Generalization of the Law of Bra-
vais.—The law of Bravais is based on the
lattice only. It has been generalized
(J.D. H. Donnay and D. Harker, 1937) by
taking the space group into account; i.e.,
ROCTAH o by con§idering the effect which SCreW axes
Fle. 46— TRIGON. and glide plapes have on interplanar dis-
TRIOCTAHEDRON oN cupg (ANCES. A series of nets parallel to the face

(kkl) may become interleaved by addi-
tional planes, generated by space-group operations, so that the
interplanar distance is divided by n(n=2, 3, 4, 6). This is written
d(nhnknl) = (1/n).d(kkl), where multiple indices are used to
designate the face so affected by the space-group symmetry. The
predicted importance of such a face, therefore, decreases. The
generalized law agrees with the observed facts better than the clas-
sical law of Bravais, although the agreement is not in all cases
perfect. Some anomalies persist. In simple ionic crystals, such
as sodium chloride, differently charged ions may have the same
morphological effect; the space group of ionic sites then controls
the form development.

The space group (or possible space groups), in most cases, can

’ ’ 16
Fie. 45, —TRIGON -
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be determined from morphological data, as was shown by Donnay
and his coworkers. The study of the relative importance of the
faces in a zone forms the basis for such a determination. G. Jung-
ham (1874), H. Baumhauer (1903-03), P. Niggli (1919), H. Unge-
mach (1923-35) and M. A. Peacock (Harmonic-Arithmetic rule,
1936) have contributed to this question.

TWINNING

A twin is an assemblage of two (or more) crystals grown to-
gether in a single crystalline edifice and in such relative orientations
that one crystal is symmetrical of the
other(s). Obviously the twin operation,
which brings one crystal into coincidence
with the other, cannot be a symmetry op-
eration of the crystal. Common sense and
good angular measurements must be used
to distinguish a twin from a haphazard in-
“a1 tergrowth of crystals.
Gliding (Mechanical Twinning) in

;‘—? Calcite.—Baumhauer’s experiment (fig.

69) shows that the twinned position is

nothing more than a second position of

equilibrium of crystalline matter; the lat-

\ A ter may almost indifferently adopt either
FIG. 47—TETRAGON- the parallel position or the twir_med posi-
TRIOCTAHEDRON tion (during growth or, after a single crys-
Fic. 48.—TETRAGON- tal has been grown, under mechanical

TRIOCTAHEDRON ON CUBE stress). The conclusion is that the forma-
tion of a twin is not controlled by any law
essentially different from those that govern the growth of a single
crystal.

Haiiy’s Fundamental Observation (1801).—Haiiy studied
staurolite twins and observed that any face of one of the twinned
individual I was parallel to a face (or a possible face) of the other
individual II. This was true within the limits of error of his con-
tact goniometer; viz., a few degrees. In reticular parlance, any
face of I is a net in the lattice of II, or again, there is one lattice
(the twin lattice) pervading the whole edifice, and the faces of I
and II are nets of this lattice. The prolongation of this lattice
from crystal I to crystal II may be exact or it may suffer a slight
deviation at the contact between I and II (since the observation
was made by means of a contact goniometer). The twin lattice
must be either the crystal lattice or a multiple thereof. The pro-
longation of the twin lattice from I into II is the condition of sta-
bility of the twin.

If the twin lattice is a multiple of the crystal lattice, not all the
nodes of the crystal lattice will be restored by twinning; only a
certain number of them will be. Call these the S nodes. The lat-
tice of the S nodes is the twin lattice. The number of S nodes
cannot be too small a fraction of the total number of nodes in the
crystal lattice; hence the twin lattice should be a small multiple
of the crystal lattice. This prediction is substantiated by observa-
tion.

Types of Twinning.—From the above, it follows that there
are four possible types of twinning:

1. Twinning by merohedry: The crystal
lattice has (rigorously) elements of sym-
metry that the crystal does not have.
(They are called the additional symmetry
elements of the lattice.) This is the case
in merohedral crystals.

2. Twinning by pseudomerchedry: The
crystal lattice has elements of pseydosym-
metry that the motif cannot have as ele-
ments of symmetry and does not ordinarily
have as elements of pseudosymmetry. By analogy with (1), such
a crystal is called pseudomerohedral.

3. Twinning by reticular merohedry: A small multiple lattice of
the crystal has (rigorously) elements of symmetry that the crystal
lattice (and a fortiori the motif) cannot have as symmetry ele-
ments. These are additional symmetry elements of a multiple
lattice; the simple lattice is merohedral with respect to the multiple

Fi16. 49.—PENTAGON-
TRIOCTAHEDRON
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lattice as, in (1), the motif was merohedral with respect to the
simple lattice; hence the name.

4. Twinning by reticular pseudomerohedry: A small multiple
lattice of the crystal has elements of pseudosymmetry that neither
the crystal lattice nor the mouif can have as elements of symmetry
or pseudosymmetry.

The twin operation, which defines the twin law, is performed

[ r
50 y 51 © 52
FIG. 50.—TRIGON-TRITETRAHEDRON, FIG. 51.—TETRAGON-TRITETRAHEDRON
F16. 52.—PENTAGON-TRITETRAHEDRON

about a twin element. The latter is one of the additional elements
of symmetry (or pseudosymmetry) that the lattice has in addition
to those of the crystal or that a small multiple lattice has in addi-
tion to those of the crystal lattice.

Twinning by Merohedry (A. Bravais).—In cases of hemi-
hedry there are two possible orientations of the motif inside the
cell; in cases of tetartohedry, there are four; in the cases of ogdo-
hedry, eight. Hence the number of possible twinned individuals
in each case.

The twin element may be any one of the additional symmetry
elements of the lattice: either an axis, a plane or a centre. All
these elements are reticular elements (row, net, node). The sym-
metry of the twin is the combination of the crystal symmetry plus
the twin elements. (All the additional symmetry elements are
simultaneously twin elements.)

The twined individuals are united by a surface (composition
surface), usually irregular, which may be, but need not be, a plane.
Indeed the condition of stability of the twin is rigorously satisfied
at any point within the crystal, for the prolongation of the twin
lattice from I to II is perfect everywhere.

As to the external appearance, two cases
may occur: (1) Each twinned crystal
shows merohedral crystal forms (i.e.,
forms that are not the same as in the holo-
hedry). In this case the z twinned orien-
tations show merohedral forms that, by
their relative positions, simulate comple- 53
mentary forms. Often each twinned crys-
tal retains its individuality and the twin
looks like an interpenetration of two euhe-
dral crystals. Hence the name penetration
twins; e.g., pyrite iron-cross and staurolite.
(2) The twinned crystals do not show
merohedral forms but only forms that are
the same in both the holohedry and the
merohedry under consideration; e.g., py-
rite, showing only the cube. The appear-
ance is that of a single crystal, from the
geometrical standpoint only. The physical
appearance of the faces may show the merohedry (striations in
pyrite). This imitation of a single crystal by a twin is called
mimetism. Other types of twins show it. As to size, the twinned
portions may be either a few large individuals or a great many tiny
domains. In the latter case the twin simulates a holohedral crys-
tal. For instance in low-temperature quartz a complex twin of
many small crystals (some right-handed, the others left-handed),
looks like a holohedral crystal devoid of rotatory power, called
neutral quartz. This is a case of pseudoparamorphism.

Examples—Tetrahedrite, chalcopyrite, hemimorphite and topaz.

Twinning by Pseudomerohedry (E. Mallard).—The
pseudomerohedral crystal having a certain symmetry, either holo-
hedral or merohedral, its lattice has in addition certain elements
of pseudosymmetry (or quasi symmetry). The lattice thus has
several orientations that are no longer identical. as in twinnine hv

FiG. 53.—~HEXAOCTA5I:‘ED-
RON

FiG. 54.—CUBE MODI-.
FIED BY HEXAOCTAHED-
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merohedry, but are only approximately the same. These orienta-
tions are symmetrical with respect to the additional elements of
pseudosymmetry. Such orientations, it is observed, can be asso-
ciated in twins. The additional elements of pseudosymmetry are
the twin elements. The prolongation of the lattice from one orien-
tation to the next is no longer rigorous but only approximate.
There is a slight change in the orientation of the lattice as it passes
from I to II. This shows a certain tolerance in the principle of
stability of the twin (prolongation of the lattice from I to II);
this tolerance is of the order of a few degrees.

An element of pseudosymmetry is not and cannot be exactly
defined in direction. Any plane that is al-
most parallel to a plane of pseudosymmetry
is also a plane of pseudosymmetry. The
same is true for the axes of pseudosym-
metry; all the lines contained in a cone of
small aperture are axes of pseudosymmetry
if one of them is. How is it possible then
to speak of twinning with respect to such
ill-defined elements? Mallard gave the an-
swer to this query.

Every symmetry axis of a lattice is a
simple row of the lattice, and every symmetry plane of a lattice is
a simple net of the lattice. Hence an axis of pseudosymmetry
must always be close to a row, which is also an axis of pseudosym-
metry. Likewise a plane of pseudosymmetry must always be close
to a net, which is also a plane of pseudosymmetry. It has been
observed, in the case of twinning by pseudomerohedry, that the
twinned crystals are symmetrical of each other with respect to
either the row that is an axis of pseudosymmetry, or the net that is
a plane of pseudosymmetry. These reticular elements of pseudo-
symmetry are the twin elements. This observation has been
called (by G. Friedel) the law of Mallard. The law of Mallard
may also be stated as follows: When the lattice of a crystal has
reticular elements of pseudosymmetry (net or row), these reticu-

lar elements can be twin elements (twin plane or twin axis).
and the row that is almost normal to it or

to the net that is almost normal to it. This  » ¥
twin plane is (oro); the obliquity, which

The twin obliquity is the angle between the normal to the twin
the angle between the twin axis (reticular
angle is usually small; it may exceptionally
x
< . S I " 56
varies with composition, is about 3° to 4°. /

Fie.
HEDRON

55.—HEXATETRA-

plane (reticular plane of pseudosymmetry) g

4
axis of pseudosymmetry) and the normal \
attain 5° or 6°. In albite twinning the
In twinning by merchedry the obliquity

is o.

When there is a twin plane, this plane is
a plane of pseudosymmetry of the lattice,
which means that the mirror image of the
lattice in that plane almost coincides with
the lattice itself. The coincidence is per-
fect for all the nodes located in the twin
plane, since these nodes belong to both
twinned orientations. The farther away
from the twin plane, the greater the devia-
tion between the original lattice and the
reflected lattice will be. If the prolonga-
tion of a lattice from I to IT is the condi-
tion for the stability of a twin, then the condition is here rigorously
satisfied only in the twin plane itself. The growing crystal may
change the orientation of its motif, and hence begin to twin off,
from all the points situated in the twin plane, the latter will there-
fore be the composition surface, planar and reticular.

When there is a twofold twin axis, the axis is a row and an axis
of pseudosymmetry for the lattice. The lattice will nearly coin-
cide with the lattice obtained after a 180° rotation about the axis.
The coincidence of the original lattice and the rotated lattice is
perfect only for the nodes situated on the axis itself. The compo-
sition surface must contain the axis. Consider the net quasi-
notrmal to the axic and the nlane (not reticular) exactlv normal

FIG. 56.—MONOCLINIC
AXES OF CO-ORDINATES
F1G. 57.—AUGITE CRYS-
TAL
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to the axis. Let AB be their intersection. It is easy to see that
the nodes in their original positions and the nodes after the 180°
rotation will be the farther apart the farther one goes away from
AB. The condition of stability of the twin is satisfied best there-
fore in a plane (not reticular) defined by the twin axis and the line
AB. This plane will be the composition surface; it has been
called the rhombic section.

When there is a three-, four- or six-fold twin axis, the compo-

| —

A B
Fi6. 58.—RIGHT-HANDED (A) AND LEFT-HANDED (B) FORMS OF CRYSTALS
OF TARTARIC ACID

sition surface must contain the axis. Nothing more can be pre-
dicted.

All the predictions of the theory are verified by observation.
The most striking example is the pericline law in plagioclases, in
which the rhombic section was known to be nonreticular long be-
fore the fact was explained by this theory.

Repeated twinning: Some crystalline species show twinning re-
peated a great many times during growth. This means that at
every moment the condition for the stability of the twin was satis-

fied. The laws of the composition surfaces
are rigorous in such cases. Other species
show only dual twinning (fig. 70 and 71);
this means that at a certain moment the
twinned orientation began to grow and kept
on growing as a single crystal, departing
more and more from the condition of sta-
bility of the twin. The composition sur-
face in such case obeys the prediction of
the theory only at the early stage of twin-
Fis. 53— HEMIMor. DINg; afterward the composition surface
PHITE CRYSTAL may become irregular for it is an accidental
contact between two independent crystals
which interfere with each other’s growth.

Examples —Albite and other plagioclases are triclinic crystals.
The cell is pseudomonoclinic: (o10) is a plane of pseudosymmetry,
[oro] is an axis of pseudosymmetry. The angle (oo1):(0o10) =
86° 24’ in albite. Two twins are possible; both have been found:
(1) albite twinning, in which the twin plane and composition plane
is parallel to (o10); (2) pericline twinning, in which the b-axis
[o1c] is the twin axis and the composition surface is planar though
not a net in the lattice. This plane cuts the vertical zone [ {110}
{110}] along a rhomb (defined by the row [o10] and the normal to

*

61
F1G. 60 AND 61.—TETRAGONAL DIPYRAMIDS Okl AND hhl IN COMBINA-
TION

it contained in the net (o10); hence the two diagonals are per-
pendicular). This is the origin of the name rhombic section. The
trace of the rhombic section on (o10) varies with the chemical
composition of the plagioclase, because to a different chemical com-
position there corresponds a different set of axial elements or, in
other words, a differently shaped cell. The angle of the rhombic

810K

section (as it is called) varies from 422° to —17° from albite
(NaAlSizOs) to anorthite (CaAlLSi0s). It is measured on (o10)
from the trace of (oor) toward the trace of the rhombic section
and is called (4 ) if clockwise, (—) if counterclockwise.

Note that, in albite twinning, I is symmetrical of I by reflection
in the plane (o10) or by a 180° rotation around a line perpendicu-
lar to (o10). The two definitions of the twin are geometrically
identical because of the presence of a centre of symmetry. Now
the two orientations I and II” of the pericline twinning are sym-
metrical of each other with respect to a 180° rotation around the
b-axis [010], a row that is almost normal to (o10). Hence the two
orientations IT and IT’, obtained from I respectively by 180° ro-
tations about the exact normal to (o10) and about the pseudo-
normal to (or10), will not differ much from each other. The two
twins, however, differ greatly by their composition surfaces, net
(o10) in albite twinning and rhombic section in pericline twin~
ning, which are almost at right angles to each other.

Example—Cerussite (and many species with a pseudohexagonal
lattice). Holohedral orthorhombic, ¢:6:¢c = 0.610:1:0.361, the
lattice is centred on (oo1). Draw the lattice on (oo1) and its
hexagonal pseudosymmetry becomes apparent. The planes (110)
and (130) are almost at right angles and hence are planes
of pseudosymmetry of the lattice. Hence, there are two corre-

. spondent twins: one that has (110) as its
twin plane and composition plane; the
other (less frequent and of the nonrepeated
type) has (130) as its twin plane and com-
position plane. The angle (110):(130) =
02° 44’. The obliquity- of the twin is 2°
44" in both twins.

Twinning by Reticular Merohedry
(G. Friedel) —Examples—Spinel (fig.
#2) and fluorite (fig. 73).

Twinning by Reticular Pseudomezr-
ohedry (G. Friedel).—Examples—Py-
roxene and orthoclase.

These are extensions of the preceding
cases. The cell whose symmetry or pseu-
dosymmetry conditions the existence of the
twin is a multiple cell (instead of the small-
est cell) of the crystal lattice.

63 (J.D.H.D.)

F16. 62.—CHALCOPYRITE GROWTH OF CRYSTALS

CRYSTAL
EL‘:{‘ST:IS_'_FERGUSON"E Character of Faces.—Only rarely do
actual crystals present the symmetrical ap-
pearance shown in the figures given above, in which similar faces
are all represented as of equal size. It frequently happens that
the crystal is so placed with respect to the liquid in which it grows
that there will be a more rapid deposition of material on one part
than on another; for instance, if the crystal be attached to some
other solid it cannot grow in that direction. Only when a crystal
is freely suspended in the mother-liquid and material for growth
is supplied at the same rate on all sides does an equably developed
form result.

Two malformed or misshapen octahedra are represented in fig.
10 and 11; the former is elongated in the direction of one of the
edges of the octahedron, and the latter is flattened parallel to one
pair of faces. It will be noticed in these figures that the edges
in which the faces intersect have the same directions as before,
though here there are additional edges. The angles (70° 32’ or
109° 28’) between the faces also remain the same; and the faces
have the same inclinations to the axes and planes of symmetry as
in the equably developed form. Although from a geometrical
point of view these figures are no longer symmetrical with respect
to the axes and planes of symmetry, yet crystallographically they
are just as symmetrical as the ideally developed form, and however
much their irregularity of development, they still are regular
(cubic) octahedra of crystallography. A remarkable case of ir-
regular development is presented by the mineral cuprite, which
is often found as well-developed cubes; but in the variety known
as chalcotrichite it occurs as a matted aggregate of delicate hairs,

e
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each of which is an individual crystal enormously elongated in the
direction of an edge of the cube.

The symmetry of actual crystals is sometimes so obscured by
irregularities of growth that it can
be determined only by measure-
ment of the angles. An extreme
case, where several of the planes
have not been developed at all, is
illustrated in fig. 8, which shows
the actual shape of a crystal of
zircon from Ceylon; the ideally
developed form (fig. g) is placed
with it for comparison, and the
parallelism of the edges between
corresponding faces will be no- iz
ticed. This crystal is a combina- FI6. 64.—STEREOGRAPHIC PROJZC-
tion of five forms; viz., two te- TION OF A RHOMBOHEDRAL CRYSTAL
tragonal prisms (a and m), two W'TH SYMMETRY 3 2/m
tetragonal dipyramids (e and p), and one ditetragonal dipyramid
(x, with 16 faces).

The actual form, or habit, of crystals may vary widely in dif-
ferent crystals of the same substance, these differences depending
largely on the conditions under which the growth has taken place.
The material may have crystallized from a fused mass or from a
solution; and in the latter case the solvent may be of different
kinds and contain other substances in solution, or the temperature
may vary. Calcite (g.v.) affords a good example of a substance
crystallizing in widely different habits, but all crystals are referable

to the same type of symmetry and may be
C&

reduced to the same fundamental form.

When crystals are aggregated together,
and so interfere with each other’s growth,
special structures and external shapes often
result, which are sometimes characteristic
of certain substances, especially among
minerals, :

Incipient crystals, the development of
which has been arrested as a result of un-
favourable conditions of growth, are known
as crystallites (¢.v.). They are met with
in imperfectly crystallized substances and
in glassy rocks (obsidian and pitchstone),
or may be cbtained artificially from a solution of sulphur in car-
bon disulphide rendered viscous by the addition of Canada balsam.
To the various forms H. Vogelsang gave, in 1875, the names globu-
lites, margarites, longulites, etc. At a more advanced stage of
growth these bodies react on polarized light, thus possessing the
internal structure of true crystals; they are then called microlites,
These have the form of minute rods, needles or hairs, and are ag-
gregated into feathery and spherulitic forms of skeletal crystals.
They are common constituents of microcrystalline igneous rocks,
and often occur as inclusions in larger crystals of other substances.

Inclusions of foreign matter, accidentally caught up during
growth are frequently present in crystals.
Inclusions of other minerals are specially
frequent and conspicuous in crystals of
quartz, and crystals of calcite may contain
as much as 609 of included sand. Cavi-
ties, either with rounded boundaries or
with the same shape (negative crystals) as
the surrounding crystal, are often to be
seen; they may be empty or enclose a
liquid with a movable bubble of gas.

The faces of crystals are rarely perfectly
plane and smooth, but are usually striated,
studded with small angular elevations, Fie.
pitted or cavernous, and sometimes curved CRYSTAL

FiG. 65.—TOURMALINE
CRYSTAL

66.—DIOPTASE

or twisted. These irregularities, however, conform with the sym- -

metry of the crystal, and much may be learned by their study.
The parallel grooves or furrows, called striae, are the result of os-
cillatory combination between adjacent faces, narrow strips of first
one face and then another being alternately developed. Sometimes
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the striae on crystal-faces are due to repeated lamellar twinning,
as in the plagioclase feldspars. The directions of the striations are
very characteristic features of many crystals; e.g., the faces of the
hexagonal prism of quartz are always striated horizontally, while
in beryl they are striated vertically. Cubes of pyrite (fig. 74) are
striated parallel to one edge, the striae on adjacent faces being at
right angles, and a result of oscillatory combination of the cube
and the pentagon-dodecahedron; while cubes of sphalerite (fig. 75)
are striated parallel to one diagonal of each face (i.e., parallel to
the tetrahedron faces). Compare
fig. 39). These striated cubes
thus possess different degrees of
symmetry and belong to different
symmetry classes. Oscillatory
combination of faces gives rise
also to curved surfaces. Crystals
with twisted surfaces (see DoLo-
MITE) are, however, built up of
smaller crystals arranged in
nearly parallel position. Some-
times a face is entirely replaced
by small faces of other forms,
giving rise to a drusy surface; an
example of this is shown by some
octahedral crystals of fluorite
(fig. 2) which are built up of
minute cubes,

The faces of crystals are some-
times partly or completely re-
placed by smooth bright surfaces
inclined at only a few minutes of arc from the true position of the
face; such surfaces are called vicinal faces, and their indices can be
expressed only by very high numbers. In apparently perfectly de-
veloped crystals of alum the octahedral face, with the simple in-
dices@ 111 fjis usually replaced by three faces of a very low triocta-
hedron, with indices such as { 251.251.250 }; the angles measured
on such crystals will therefore deviate slightly from the true octa-
hedral angle. Vicinal faces of this character are formed during
the growth of crystals, and have been studied by H. A. Miers (Phil.
Trans., series A, vol. 202 [1903]). Other faces with high indices,
viz., prerosion faces and the minute faces forming the sides of
etched figures (see below), as
well as rounded edges and other
surface irregularities, may result,
however, from the corrosion of a
crystal subsequent to its growth.
The pitted and cavernous faces
of artificially grown crystals of
sodium chloride and of bismuth
are, on the other hand, a result of
rapid growth, more material be-
ing supplied at the edges and
corners of the crystal than at the
centres of the faces. (L.J.S.)

Mechanisms of Crystal
Growth.—Crystals will only
grow if the solution or vapour in
contact with them is supersatu-
rated or, in the case of a melt, un-
dercooled. If the degree of su-
persaturation is very high the
growing crystal lowers the con-
centration of atoms or molecules
in its immediate neighbourhood.
In this case projecting edges or
corners are placed in a richer me-
dium and grow faster, leading to
the boxlike or feathery (den-
dritic) crystals familiar in frost
patterns and snowflakes. If, on
the other hand, the supersatura-
tion is very slight, the growth of

F16. 67 —EXAMPLE OF A SCREW
AXIS IN A PLANT
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FiG. 68.—MIRRORS AND GLIDE
PLANES IN TWO-DIMENSIONAL PAT-
TERNS
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the crystal may depend on the existence of surface irregularities or’

steps on the most slowly growing face. One source of such steps
was found in the existence of internal spiral dislocations (F. C.
Frank, 1949). These may be thought of as if made by slicing the
crystal parallel to an axis and shearing one side of the slice over
the other by one or more lattice intervals (Burger’s vector)—see
fig. 76. Where a spiral dislocation appears on a crystal face it gives
rise to a step on which free molecules collect far more easily than
on the flat face. Consequently the step moves forward, but be-
cause of the dislocation new steps are
formed and spiral pyramids are set up, the
existence of which has been frequently ob-
served. Spirals may be right- or left-
handed. Where both exist together on a
face the steps belonging to each join to
form a normal stepped pyramid. Both
spiral and stepped pyramids can give rise
to the vicinal faces which have been ob-
served as slight distortions of normally

‘FIG. 69.—CLEAVAGE
RHOMBOHEDRON OF CAL-
CITE

Porti bed 008 OVl
Portion abede goss over plane crystal faces. (ArR.F. W.)
pressure at b STRUCTURE OF CRYSTALS

Apart from some inspired guesses,
knowledge of crystal structure began with the discovery, in 1912,
by Max von Laue, W. Friedrich and P. Knipping, that X-rays can
be diffracted by crystals (see X-RaAys, NATURE oF), a discovery
used almost at once by Sir William Bragg and Sir Lawrence Bragg
to find the structures of all the main types of simple crystal struc-
ture—rock salt, zinc blende, diamond, fluorspar, iron pyrites and

A calcite. Subsequently other methods, based
on electron diffraction and later on neutron
70
71

diffraction, were used for crystal analysis;
but knowledge of crystal structure is
mainly derived from X-ray studies.

The first period of the history of crystal-
structure analysis, already referred to, was
the shortest though the most fundamen-
tally important. It was interrupted by
World War I, during which the only im-
portant advance was the use of the powder
crystal method by A. W. Hull and P. De-
bye to determine the structure of metals.
The second period began effectively in 1920
and lasted until 1928. The centre of ac-
tivity lay still with the Braggs, with Sir
William at the Royal institution in London
and Sir Lawrence at Manchester univer-
sity, the former specializing on organic and
the latter on inorganic structures. It was
the period of the development of all the
chief methods of structure analysis, both
physical and mathematical, and of the elu-
cidation of more complex types of struc-
ture of the long-chain fatty acids and

FIG. 70 AND 71.—eYp- paraffins, of naphthalene and anthracene
SUM, DUAL TWIN AND among the organic compounds, of quartz
SINGLE CRYSTAL and the main types of silicates among the
inorganic. This latter work, largely of the
Manchester school, was to provide a key to the complexities of
chemical mineralogy. It was to lead, in the hands of V. M. Gold-
schmidt, the founder of modern geochemistry, to the establish-
ment of definite radii for most atoms and ions and to the concept
of co-ordination as the guiding principle of crystal chemistry, the
laws of which were more precisely formulated by Linus Pauling

=5 P g e

In the thlrd perlod from 1929 to 1939, a rapld advance “took
place all along the line. Crystal structure analysis spread to
other centres and other countries. Methods of analysis were
greatly improved, particularly by the use of Fourier series, and
really complex organic crystals began to be worked out. A turn-
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ing point was the analysis of the dye phthalocyanin by J. Mon-
teath Robertson, the first organic molecule whose structure was
determined without any dependence on chemical data. At the
same time the correct formula of the bio-
logically important group of sterols was de-
termined largely with the help of X-ray
methods. A start was even made on the
structures of the far more complicated pro-
ﬁv teins through the work of W. T. Asthury
C S on the fibrous proteins of wool and muscle,
72 and that of J. D. Bernal on the globular
proteins and crystallized viruses. During
this period X-ray methods were used by
A. Westgren, A. J. Bradley and W. Hume-
Rothery to elucidate the structure of al-
loys and to discover the rules—very dif-
ferent from those prevailing in other
) branches of chemistry—that determine the
73 composition of intermetallic compounds.
F16. 72.—SPINEL TWIN World War II did not so much interrupt
FIG.  73.—FLUORITE (rygia] structure analysis as turn it in dif-
TWIN S .
ferent directions and concentrate it upon
definite objectives. In the fourth period, which began in 1940,
a rapid growth in the power and range of analytic methods was
made possible by much greater resources in apparatus and even
more in computational aids. Its first triumph was the analysis of
penicillin in 1945 by D. M. Crowfoot and C. W. Bunn well in
advance of chemical knowledge of the correct formula of the
molecule. In the next few years the analysis of organic molecules
of up to 40 or so atoms became almost a routine, if tedious,
operation. Interest moved on, in one direction to the study of
imperfect crystals and their relation to crystal growth and
deformation, and in the other to the most complex structures of
all—those of proteins— which the studies of Crowfoot and M. F.
Perutz and the hypotheses of M. L. Huggins, Sir Lawrence Bragg
and L. Pauling made the chief centre of interest in crystal struc-
ture analysis.

X-Ray Analysis of Crystal Structure.—It is impossible here
to do more than outline the successive stages of crystal analysis.
(The physical principles involved are described in the article
on X-Rays, NaTure or.) Essentially, the experimental proce-
dure is to allow a narrow beam of X-rays, usually limited by
slits or pinholes, to fall on a crystal, and to study the X-ray
beams—very much weaker than the incident beam—that are
diffracted from it in different directions (see fig. 77).

In all but the original Laue method—of
historical rather than practical interest—
the incident X-rays are substantially mono-
chromatic. The method now most com-
monly employed uses the K « radiation of
copper, A=1.54 A. (The Angstrom unit,
A=10"8 cm,, is that unlversally used for
expressing cell dimensions; it is convenient
because the sizes of atoms are of the order
of a few units. All atomic radii are con-
fined to the range of between 0.3 and 2.2
A.) Planes in the crystal which repeat at
a spacing d diffract such rays strongly only
when #, the glancing angle of the ray on
the plane, satisfies the relation sin = A,

2d
Bragg’s law. To ensure that this occurs,
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F1G6. 74.—STRIATED CUBE

OF PYRITE

FIG. 75.—STRIATED cUBE two methods can be used, that of the ro-
OF BLENDE (SPHALER- tating crystal and that of the powder. In
ITE)

rotating crystal methods the crystal is usu-
ally turned about some crystallographic axis in such a way that all
the planes capable of reflecting come one after the other into the
reflecting position (see fig. 77 A and B). In the powder method
the number of crystals is made so great that some of them are cer-
tain to be in the reﬂectmg posmon
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The reflected beams are detected either by the image they
make on a photographic film or by the ionization they produce in
an lonization chamber —Bragg’s original method—or in a Geiger
or other counter. Numerous devices have been constructed, in-
cluding moving film cameras by K. Weissenberg, W. F. de Jong,

F1G. 76.—DIAGRAM OF SCREW DISLOCATION IN CUBIC CRYSTAL
The edge permanentiy left by such a dislocation can be the seat of addition
of new elements to the crystal face

M. J. Buerger and J. Bouman (see fig. 74-C), and one- and two-
circle spectrometers (to enable the diffracted rays to be conven-
iently registered and to ensure that there can be no confusion
between reflections coming from different planes). The photo-
graphic methods are usually employed when a very large number
of planes have to be registered, the ionization method when accu-
rate values of a limited number of intensities are required.

The data which are the basis of all crystal analysis consist of
two radically different types of information: that on the angles

C | Axis
SRR B
c r\1:?_7L-2~
INCIDENT BEAM N it
OF X-Ravs INCIDENT BEAM
R == Znet =0
it b & P A
~ - - -
-z ToNL=2
\ _/
AN
A B
ROTATION
OF
CRYSTAL
A} — ¥
MOVEMENT OF FiLM HOLDER
¢
BY COURTESY OF (A) SIR LAWRENCE BRAGG AND G. BELL & SONS LTD, (LONDCN), (B) JOHN

WILEY AND SONS, INC., FROM BUERGER “X-RAY CRYSTALLOGRAPHY"

FIG. 77.—ROTATION PHOTOGRAPH, X-RAY ANALYSIS OF CRYSTAL STRUC-
TURE

(A) plane plate and (B) cylindrical film show rotating crystal methods; (C)
Is the Weissenberg photograph mechanism. A screen, not shown, limits reflected
beams to one layer line

at which reflection takes place (i.e., the different values of ©
corresponding to each crystallographic plane); and that on the
intensity of each reflection as a proportion of the corresponding
incident intensity. The former gives all the information on the
metrics of the crystal, in particular the dimensions of the ele-
mentary cell by whose repetition the whole crystal may be
deemed to be constructed. This geometrical part of crystal anal-
ysis i1s rapid and straightforward. but except for verv simnle

CRYSTALLOGRAPHY

crystals it is insufficient to determine structure and can only be
used for identification and comparative studies. All that can be
known of the way atoms and electrons are arranged in the ele-
mentary cell must be derived from the study of the intensities of
reflection. This second, optical, part of X-ray analysis can never
be direct and is always difficult and often ambiguous in its impli-
cations. The reason is that unlike normal optical systems—for
light, electrons and other image-forming radiations—the X-rays
used are always divergent and different rays are never made to
interfere, as are rays of light, in the formation of an optical
image. In physical terms, all that can be done is to register their
intensity and not their amplitude. This is a physical vectorial
property, like a direction on a map, in which not only the length
but the bearing or phase needs to be known. Thus although it is
always possible to calculate precisely what the X-ray scattering
from any disposition of matter may be, the converse process is
in general impossible. From any measured scattering of X-rays
the most that may be deduced directly is that the crystal may
have any of a number, indeed an infinite number, of electronic

BY COURTESY OF PROF. J. M. ROBERTSON AND “JOURNAL OF THE CHEMICAL SOCIETY* (LONDON)

FiG. 78.—FOURIER PROJECTION OF MOLECULE OF NICKEL PHTHALOCYANINE
The positions of the atoms are near the centres of the main contoured peaks

distributions, each of which is capable of giving the same scatter-
ing pattern. Of the possible electronic distribution only a few will’
correspond to one having the right number of atoms of each kind
that are known to exist in the crystal. The whole art of crystal
structure analysis comprises the resolution of this fundamental’
ambiguity by invoking data about atomic and electronic distri-
bution independently derived from other experiments.

The process of crystal analysis is essentially mathematical, an
example of the application of Fourier inversion (used in many
other fields of science and technology, for instance in determining
the relation between a sound track and the notes or frequencies
that go to build it up). The stages are briefly as follows.

1. Determination of the size of the unit or repeat cell. This:-
is usually determined by a measurement of the positions of spots-
on a photograph or of the angular position of the ionization de-
tector. It is expressed in terms of three axial lengths a, &, ¢-
and the angles between them a, 8, v, where these differ from
a right angle. These measurements, if sufficiently accurate,
provide a complete identification of the crystal.

2. Determination of the cell content. The absolute weight of
material in the cell is given by multiplying its volume—abc X!
10 % c.c. (when @, b and ¢ are at right angles and are measured :
in Angstrom units)—by the measured density p. To express the:
cell content in molecular units it is necessary to divide by the
weight of one atom of hydrogen—1.66 X 1072 gm. The cell

abc X p

molecular weight is accordingly . If the substance is one:

of known molecular weicht M ther; the number of molecules in
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_ abc X p . .
the cell Z = 166 X M Z is a number determined by the sym-
metry, it is usually small—2, 4, 6 or 8. Where M is not known

abc X p
1.66 X Z
permitted by the symmetry. For example, in olivine @ = 10.2 A,
b= 4.73 &, c= 5.06 &, p = 3.2. M for Mg:SiO;s = 140.7, (‘ell
volume = 287 A3, cell weight = g20 X 107% gm. No. of mole-
020
141 X 1.66

it can be found as M = where Z has any of the values

cules per cell = = 3.94 =~ 4. Each cell contains

MgsSi4016.

3. Determination of the symmetry. A crystal structure has all
the elements of symmetry shown by its external appearance—
rotation axes, planes, centres of symmetry (see Morphology of
Crysials above)—but. it will also have regular internal partial
periodicities—screw axes, glide planes—the existence of which
are shown by the absence of reflections of planes with certain
indices. These can be determined usually with certainty by the
use of tables, particularly the International Tables for X-Ray
Crystallography (1952), which permit every crystal to be referred
to one of the 230 possible geometrically different space groups.
A certain indeterminacy persists as the presence or absence of
a centre of symmetry cannot normally be found directly by
X-ray methods, but these can be supplemented by crystal physi-
cal tests, particularly piezo- and pyro-electricity (see Physical
Properties of Crystals below) and also by the use of A. J. C.

CRYSTAL STRUCTURE
B

BY COURTESY OF VERLAG JULIUS SPRINGER

FIG. 79.—CORRESPONDENCE BETWEEN (A) PATTERSON PROJECTION AND
(B) CRYSTAL STRUCTURE FOR HEXACHLOROBENZENE

Each peak in (A) corresponds to a vector or vectors in (B).
vectors show large peaks.

Only CI—ClI
The C—CI peaks are the small peaks near the origin

Wilson’s statistical methods based on the different distribution
of reflection intensity in crystals with and without centres of
symmetry. Once the space group is known, the problem of find-
ing the positions of all the atoms of the cell is reduced to that
of finding the positions of those in the asymmetric unit from
which all the others can be deduced by means of the symmetry
operations of the group.

4. This completes the information deducible from the positions
of the X-ray reflections; the remainder is inferred from their
intensities. These need in the first place to be measured and
then corrected for geometrical and physical factors—angle polari-
zation, absorption, temperature, etc. The object here is to arrive
at a value [F(r1)} for the scattering power of a plane of Miller
indices %, k, I (see Morphology of Crystals above) which is inde-
pendent of all instrumental and physical conditions. The value
[F]? rather than F is obtained as only the intensity of the radia-
tion is measurable and not its amplitude F which includes an
undetermined phase angle factor.

The X-rays are scattered by electrons and as these are not
concentrated in the centre of the atoms but spread over a finite
volume the angular scattering of a single atom is not constant,
becoming less at higher angles because of mutual interference.

811

Each kind of atom has therefore a characteristic scattering or f
curve which, measured in terms of the scattering of one electron,
rises to a value equal to the atomic number at low angles. If the
position of the different atoms in the cell is known, expressed in
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F1G. 80.—ATOMIC AND IONIC SIZES

parameters or proportions of the cell axes, then the [F]? value
of any plane can be calculated—

[Fowo]® = (3" fr cos 27 (hw, + By, + 12} +
(T f,sin 2 7 (he, + ky, + I5,)}? ¢5)
1

where the summation is carried out for all the » atoms in the cell
and f, is the value of the f curve for the rth atom at the angle
corresponding to the reflection from the plane (%, %, I).

To solve the inverse problem of finding the density of electrons

CONTOURED PLAN

>
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F16. 81.—ELECTRON DENSITY IN H: MOLECULE

at any point of parameters (x, ¥, 2) in the cell there is the triple
Fourier sum—

p (xyz) = Ziz [F(\h/,kl):l cos {27 (hx + ky + Iz) — a (kkD) ] (2)

where [F(,;)] is the measurable absolute value of the structure
factor of the plane %kl and o (kkl) is the undetermined phase
angle attributable to that plane, the summation being taken
over all values of %, & and /, positive and negative. The deter-
mination of structure comes down to that of finding the values
of o (kkl) for every plane.

0
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3 5 5 g 8 When the a’s have been determined or guessed at the results
N - o N £ of the Founier analyses are usually set out in projection or sec-
. i R i«: 3 ‘?w on + '_g tions such as those shown in fig. 78 in which the position of the
SRz | S B I T ©m g atoms is shown in the centres of electron density indicated b
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U 35 S5 188 2E L direction apart corresponding to its position (see fig. 79).
EXEIET) S oS 993 ) Crystal analysis at this point may branch along three tracks:
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In the special case where two almost identical (isomorphous)
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structures can be found differing only by the presence of a heavy
atom in one or its absence in another, the process is direct. The
phases can be found by taking the sum or difference of intensities
of the same plane in both crystals. It was in this way that the
structure of phthalocyanine (fig. 78) was determined, using its

F1G. 83.—ATOMIC FORCES IN CRYSTAL STRUCTURE.
NATION

See TEXT FOR EXPLA-.

nickel and hydrogen derivatives. The substitution method thus
offers a powerful semichemical way of deriving crystal structures.

5b. The trial-and-error method was the first method used—and
with great success—by the Braggs in their early crystal structures
and even in elucidating many complex silicate structures. Strictly
speaking, any crystal could be analyzed by calculating the F
values for every possible arrangement of the atoms it con-
tains and selecting the one which fitted the observed F values, al-
though, except for the simplest crystals, this might take an infinite

s
— — 3
2 2
1 -— -— 1
A B <

FIG. 84.—RELATIONS OF HIGH CO-ORDINATION STRUCTURES

Fourteen spheres in three layers (1.2.3.) are shown surrounding a central
sphere (A) in cubic face-centred packing, axis vertical, (B) in cubic body-
centred packing, axis vertical, (C) in hexagonal close packing. The correspond-
ing plans are shown in (D) (E) and (F). It can be seen that (A) and (C) can
be derived from (B) by shearing of alternate layers in opposite and similar
directions respectively. In (A) and (C) there are 12 equidistant neighbour-
ing spheres (spheres marked 1X and 3X are not neighbours). In (B) there
are eight closest neighbours but six others marked 1 and 3X and 2X are at a
distance only 1.15 times farther away and must be counted in a first co-
ordination sphere of 14.

time to do. The whole art of the trial-and-error method consists
of reducing the number of irials and keeping down the errors by
intelligent guessing. The various devices for doing this are too
numerous and special to discuss here. All that need be said is
that every use is made of known interatomic arrangements, for it
is clearly a waste of time to put forward structures which are
physically impossible. Some atoms are first located on symmetry
elements and then the rest of the structure is built around them.
Use is made of strongly reflecting planes, in which nearly all the
atoms must lie, and weak planes, where their contribution must
largely cancel out. In such ways it has been possible to narrow
dowx:x the position of the atoms to a few alternatives, one of which

813

The method of trial and error was made much easier and quicker
by the use of electronic computing devices, particularly by that of
R. Pepinski, which can project almost instantaneously on a screen
the Fourier projection of a set of planes whose phases can be
varied at will until a plausible structure is obtained.

sc. The Patterson interpretation method became almost uni-
versally used as the principal or auxiliary approach to finding pos-
sible atom positions. The interpretation of Patterson diagrams
is also largely an art, but it was systematized, mainly through the
work of Buerger, C. A. Beevers and others, by various devices of
which the superposition method seemed the most promising. This
is effectively a way of unscrambling the too copious information
provided in a Patterson diagram by superposing it on itself, put-
ting the origin in turn on every important maximum and counting

TRIANGULAR TETRAHEDRAL,

8
GuUBIG

12
HEXAGONAL CLOSE-PACKED

F16. 85.—TYPICAL CO-ORDINATION ARRANGEMENTS

The radius of the smaller sphere is in the correct ratio for limiting co-ordination
of 3, 4, 6, 8, respectively but the distances have been increased so that its
position can be more clearly seen

the number of times where peaks occur in the same place. Pat-
terson methods lead to particularly rapid solutions where atoms of
different scattering power occur, for the height of a Patterson peak
depends on the product of the scattering power of the atoms at
each end of the corresponding vector., If one atom has double
the f value of another the peaks corresponding to the vectors
between such atoms will be four times as high and they can thus
be located separately.

6. By whatever method or combination of methods a trial struc-
ture is arrived at, if it is correct within somewhat broad limits
its accuracy can be improved by a process known as refinement.
This consists of comparing observed and calculated structure
factors and moving the atoms through small distances to improve
the over-all agreement. This can be done by trial and error or
by the more systematic, though laborious, methods of plotting the
Fourier sections of (F calculated—F observed) and eliminating
all its peaks by the methods of differential synthesis, or by such
mathematical devices as the least-squares method and that of
steepest descent. The final result is a structure in which the atom
positions and electron densities are known to a known degree of
accuracy limited only by the implications of the finite number of
intensities used. In the best cases this is of the order of 0.006 A
for position and with a standard deviation c.02e A=3 in electron
density. Naturally such accuracy is not obtainable except in rela-
tively simple structures, but it is there that it is most needed.

This account of methods of structure determination should suf-
fice to show that the knowledge of atomic position in crystals has
long passed the speculative stage. Crystal structure determina-
tions properly carried out can furnish more precise information
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other method, chemical or physical, which must be far more in-
direct.

The Results of Crystal Structure Analysis.—The enormous
variety of crystals whose structures have been determined, largely
by X-ray methods, makes.it impossible to attempt to describe them
here, even summarily. What can be done is to set out some of the
main principles which underlie different types of crystal structure
and to illustrate these by a few simple examples.

The nature of a wall is determined by that of the bricks and
mortar with which it is made and the way in which those bricks
are bonded together. In the same way the nature of the crystal
is determined by the properties of the atoms and of the forces that
bind them together and by the geometrical pattern in which these
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FIG. 86.—RELATION OF CRYSTAL TO GLASS
A two-dimensional diagram showing a three co-ordinated arrangement with
long range order—crystailine and without long range order—glassy with ap-
proximately the same binding energy

atoms are arranged. The differences in the appearance and physi-
cal properties of such diverse solids as diamond and butter, cork
and lead, salt and sulphur depend largely on the differences of
structure of the crystals of which they are made. As has been
seen, the patterns of atoms in crystals can be discovered and
measured by the methods of crystal analysis, while the nature of
the atoms and the forces between them is the province of chemis-
try, enormously extended and deepened by physical discoveries
about atoms and electrons and by the quantum theory which ex-
plains them. In this process of discovery crystal analysis played
a great part and, indeed, it is only by crystal analysis that it was
possible to observe and measure the arrangements of atoms as if
they were being seen in a microscope. The observations of the
crystal structures of all the major types of crystal together with
their quantum chemical explanation constituted the virtually new
subject of crystal chemistry, which, because it is not strictly
limited to crystals but extends to liquids and glasses, is more
properly the chemistry of the condensed states of matter.

To understand crystal chemistry it is necessary to have some,
but not necessarily very deep, knowledge of chemistry, inorganic
and organic, as well as some general notions of atomic structure
and the cuantum theory. Nevertheless, a general understanding
of the architecture of crystais can be reached in a simple pictorial
way by considering it in terms of actual models, in which the
atoms are represented by balls and the forces between them by
spokes of appropriate length holding them apart. Less easy to
visualize in space, but having greater physical meaning is the
picture of crystals as composed of balls of definite sizes arranged
to touch one another. The old idea of the billiard ball atom,
now so often derided, is adequate to represent to scale the struc-
ture of nearly all inorganic crystals and, slightly modified, organic
crystals as well.

To the first approximation each different kind of atom met with
in such structures has a definite size. As the space about the atom
is occupied solely by electrons—the nucleus having negligible
dimensions on this scale—the atomic size depends on the elec-
tronic state. The neutral, free atom, where the number of elec-
trons is exactly equal to the number of positive charges in the
nucleus (the atomic number Z), is extremely rare in crystal struc-
tures. Most atoms in inorganic crystals are found in a charged
form as ions, in which a stable arrangement of electrons is
achieved at the cost of loss of electric neutrality. Atoms which
have lost electrons become positive ions, and those which have
gained them become negative. For any particular element several
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states of ionization are possible, ranging from positive to negative.

The effective sizes of a neutral atom or of an ion can best be
measured by the methods of crystal analysis. There is, however,
the difficulty, which occurred at the very beginning of crystal
chemistry, that this size is indeterminate. Even in the simplest
cases all that can be directly observed is the distance between two
atoms; the point where one ends and the next begins is not imme-
diately determinable. The case of the pure metals where all atoms
are the same seemed at first an exception, for there the radius of
an atom might be taken to be half the distance between nearest
neighbours. The difference between a metal, in which much of the
space is taken up by free electrons, and an ionic crystal such as
rock salt, where all electrons are attached to ions, was not at first
realized. In the ionic case all that was necessary was to determine
the size of one ion; that of all the others followed. In 1927 V. M.
Goldschmidt, adopting J. A. Wasastjerna’s estimate (based on gas
theory and ionic refractivity) that the radius of the oxygen ion
o~ was 1.33 A, was the first to put forward a complete table of
ionic radii. (Pauling used the value 1.40 A for the o— radius with
corresponding change for other radii, but the particular values are
less important than the general concordance.) This was founded
(Table IT) on an extensive study of the crystal structures of simple
compounds of most of the elements, and was so adjusted that the
distance between two ions as measured appears as the approxi-
mate sum of their respective radii in the table. Goldschmidt’s
values for ionic radii were subsequently corrected and extended,
but substantially they remain as he set them down.

The evidence that an atom or ion has a definite size, to which
an almost constant radius can be attributed, points to the existence
between all atoms of strong repulsive forces, which resist strongly
any attempt to press them together more closely than the distance
represented by the sum of their radii. This energy originates from
the increase in energy of electrons in a compressed atom as they
must move faster to remain in equilibrium nearer to the nucleus.
The precise calculation of this repulsive force remained too com-
plicated for mid-20th century quantum mechanical methods, but
it can be estimated semiempirically. As it increases very rapidly
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F1G6. 87.—ZINC SULPHIDE STRUCTURES

The difference between them is only the cubic (A) and hexagonal close-packed
(B) arrangements of the atoms. In both cases every zinc atom is tetrahedrally
surrounded by four sulphur atoms and every sulphur atom is surrounded by four
zinc atoms

with the degree of compression, it can be arbitrarily expressed

in the form A, where #n ranges from 8 to 14. The existence of
M

repulsive forces is a scientific expression of the common-sense ex-

perience of the impenetrability of matter.

However, it is not possible to account for all interatomic dis-
tances on the basis of the putting together of incompressible
spheres of definite size.
—and this includes the whole of organic chemistry—a closer union
between atoms occurs. This is the homopolar (covalent) bond,
so called because the atoms it links are more or less of the same
nature. These atoms all have insufficient electrons to fill the
next stable shell. Equilibrium is attained by sharing electrons,

In compounds of all nonmetallic atoms:
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usually pairs of electrons. The simplest and shortest homopolar
bond, and the only one whose quantum dynamics has been fully
worked out, is that of molecular hydrogen, H-H, where the two
electrons, one originally from each hydrogen atom, are shared in-
distinguishably, between them giving rise to a molecule very simi-
lar to the atom of helium which has two electrons in orbits of about
the same energy around a single nucleus:” A homopolar bond
with two electrons in common is usually referred to as a single
bond—bonds with odd numbers of electrons are very rare; with
four in common a double bond; and with six a treble bond. The
effect of homopolar bonds is to bring atoms very much closer to-
gether than when they are merely in contact and the more so the
higher the order of the bond. Thus the distance between two
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F16. 88.~——CARBON STRUCTURES

(A) diamond showing tetrahedral co-ordination of four single carbon bonds
(aliphatic) ;
double bond system (aromatic)

oxygen ions in contact in magnesium oxide MgO is 2.96 A; in SiO.
it is 2.58 A ; while the distance between the single bonded oxygen
atoms in hydrogen peroxide H-O-O-H is 1.48 A, between the
doubly bonded atoms of molecular oxygen! o=o it is 1.27 A.
Although the quantum theory of bonding was still rudimentary in
the 19505 the lengths of many bonds had been measured from
infra-red spectra, by electron diffraction and by X-rays and found
to fit into a very simple, roughly additive scheme. For example,
the single bond distance between hydrogen atoms is 0.75 A; that
between simply bonded oxygen atoms is 1.46 A. Taking half of
each of these and adding them results in 1.10 A, near enough to
the mezsured=tong-ogerA—orthe O=H bomdes The contraction
is due to the markedly polar nature of the OH bond and is about
the largest that occurs. The result is-that the length of any
bond between two atoms A and B can be found by looking up the

X half-bond lengths for each insthe tablé-and adding them. The

energy of homopolar bonds is relatively great and generally in-
creases rapidly as the bond length decreases, but there is no simple
relation between bond length and energy.

One characteristic of homopolar forces which distinguishes them
from other interatomic forces, is that they are directed in space.
For each kind of atom the bonds joining it to other atoms tend to
set themselves at particular angles to each other. Where there
are two bonds they may be pointed in opposite directions—linear
(at 120°), triangular (at 107°), tetrahedral (at 9o®); rectangular
and intermediate values are possible. Where there are more than
two they may point to all or some of the vertices of some geo-
metrical figure—triangle, tetrahedron, octahedron or cube.

Ionic Forces.—In the greatest apparent contrast with the homo-
polar forces are the heteropolar or ionic forces. Though the in-
ternal electronic configurations of ions are stable as a result of
their net positive or negative charges, they produce a powerful and
long-range electrical field which has the effect of repelling ions of
the same and attracting those of the opposite sign. As a result,
when equal numbers of ions of both signs and the same charge are
present they come together as closely as the repulsive forces permit
—positive ions gathering around negative and negative around
positive. The geometrically simplest case is where the arrange-
ment is like a three-dimensional chessboard—white around black,
black around white. This is the structure of common salt

1The actual bond is somewhat more complex in this particular case.

(B) graphite showing planar hexagonal networks of conjugated -
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(sodium chloride, NaCl), the first crystal to be analyzed (fig. 82).

As the interaction of ions is purely electrostatic they follow

Coulomb’s law, and the forces of attraction and repulsion are

proportional to 1 the inverse square of the distance, and to the
,2

product of the charges. The energy associated with them falls

off still more slowly as 1 . Unlike homopolar forces, ionic forces

r
are not specific to particular kinds of ions, only like or unlike
signs come into question. Nor are they directed, instead they ex-
tend through space equally in all directions.

Metallic Forces.—In metals the atoms have some electrons
not included in stable shells. These electrons, referred to as free
electrons because they are not attached to any particular atom,
are responsible for the attraction between the residue of the atoms
which are effectively positive ions. Metallic attraction is inter-
mediate between homopolar and ionic. It may be considered as
caused by electrons shared between every neighbouring pair of
atoms or as caused by the electrostatic attraction between the
negative free electron and positive residual ions. Neither explana-
tion is complete, and the theory of metallic attraction was not yet
adequate in the 1950s to account for it quantitatively. Neverthe-
less, a good empirical description can be given in terms of the pack-
ing of metallic atoms whose radii, first codified by Goldschmidt,
are approximately constant and markedly larger than the radii -
of the corresponding ions (see Table IT). The attraction between
metal atoms is almost completely indiscriminate, every kind of
metal atom attracting every other, and undirected in space. It
therefore leads, as will be shown, to various types of close-packed
arrangements.

Dispersion Forces.—Atoms with stable electronic shells and
without net charge are extremely inert. They are, in fact, the
rare gases of column O of the periodic table. Nevertheless, they
do exert a small attraction on each other, as witness the fact that
they can be condensed at very low temperatures to liquids and
even to solids. This force, which was recognized by J. D. van der
Waals in 1873 and explained in terms of quantum mechanics by
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F16. 89.—FORMS OF STRUCTURES WITH 6-FOLD CO-ORDINATION

(A) sodium chioride type: 6 Cl ions around each Na ion and 6 Na ions around
each C! ion octahedrally; (B) nickel arsenide type: 6 As atoms around each NI
atom octahedrally and 6 Ni atoms around each As atom in the form of a
trigonal .prism
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F. London in 1930, is referred to here as a dispersion force. This
is because it is dependent on the property of all atoms to be
polarized in electric field giving a positive charge on one side and
a negative on the other. It is this property in relation to the
vibrating electromagnetic fields of light that gives rise to the
optical dispersion or variation of refractive power of the atom.
Two polarizable atoms in proximity mutually polarize each other,
and the net result is an attractive strength which depends on the
polarizability or dispersive force of each atom. The energy as-
sociated with it falls off inversely as the sixth power of the dis-
tance 1 . It is therefore only effective when the atoms are prac-

6

,
tically in contact. Dispersion forces are always present and are
completely indiscriminate and undirected. Except between rare
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gas atoms and between stable nonpolar molecules held together
internally by homopolar forces—for instance, such as in methane,
CH,—their effect is masked by the much stronger homopolar,
ionic or metallic forces.

Dipole Forces.—In most molecules the homopolar forces do
not lead to a complete neutralization of external field. One part
of the molecule carries a permanent positive, the other a perma-
nent negative charge. The result is an electrostatic molecular
dipole. Such dipoles, like little magnets, cling together with the
positive side of one molecule touching the negative side of the
next. Such dipole forces are intermediate in their range of action
between ionic and dispersion forces; their energy falls off as the
third power of the distance _1. A specially important case of

3

r
dipole force is that produced by the presence of the positive charge
of hydrogen atoms in certain molecules, notably in water. This
is referred to as the hydrogen bond and will be discussed in detail
later.

As can be seen even from this summary account of interatomic
forces, they are not incompatible entities, but rather represent a set
of ideal types selected out of a continuous range. Despite this they
are, like the colours of the spectrum, sufficiently distinct to pro-
vide a good working basis for the classification of crystal struc-
tures.

One point which should emerge from this semiquantitative ac-
count is that except for ionic forces there is no need for practical
purposes to pay any attention to the forces between atoms which
are not nearest neighbours—that is, if considered as spheres—if
they are not actually touching or nearly so. For example, for a
set of atoms in square array (fig. 83), if the forces between nearest
neighbours (V) be taken as unity, that between diagonal neigh-
bours (D) is reduced for repulsive forces to about 3%, for dis-
persion forces to 89, for dipole forces to 25%. For next neigh-
bours (2NV) the reduction is to 0.1%, 0.8% and 69, respectively.
With metallic forces the law of fall-off of force with distance is
known to hold, but empirically it is found to be more gradual
than the dispersion and more rapid than the dipole. Ionic forces,
strictly speaking, reach farther, but here, beyond the first neigh-
bours of opposite sign with attractive forces, the attractive and
repulsive forces practically balance out, so that effectively here
also only the nearest neighbours need be taken into account.
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FIG. 90.—FORMS OF 8-FOLD CO-ORDINATION

(A) caesium chloride type: 8 Cl ions around each Cs ion and 8 Cs ions around
each Cl ion; (B) fluorite type: 8 F lons around each Ca ion, 4 Ca ions around
each F ion

Co-ordination.—A comprehensible and not too inadequate pic-
ture of crystal structures can be built up atom by atom, linked
neighbour to neighbour, by one or another of the forces described,
or by a combination or blend between them, using the model pic-
ture already mentioned. In this way crystal chemistry can be
reduced to a description of the various geometrical ways of fitting
together neighbouring atoms and ions according to the rules of
linking, determined by their specific nature. In the first place it
must depend on the different, purely geometrical ways of fitting
spheres together in space. The number of atoms in close proximity
to any particular atom is called the co-ordination number of that
atom. Except for the cases of homopolar forces and hydrogen
bonds, which have intrinsic directions in space, co-ordination is
determined by the relative sizes of the atoms. Because atoms have
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a finite size, there must be an upper limit to the number of atoms -
of any particular size that can be packed around any one atom.
If all the atoms are of the same size that limit lies between 12 and
14 (12 being the largest number that can be packed in equivalent
and symmetrical positions as in cubic and hexagonal close pack-

F1G. 91.—STRUCTURES BASED ON THE SODIUM CHLORIDE STRUCTURE

(A) Iron pyrites. In this case the Cl_ ion is replaced by the double sulphur
molecule $-S. Each sulphur atom is linked in a tetrahedral arrangement with
one sulphur and three iron atoms. (B) Calcite. Here the spherical Cl ion is
replaced by the flat COs —ion. This results in the flattening of the cubic into
a rhombohedral cell. For the co-ordination of the ions see fig. 106

ing [see below] while if nearly equivalent positions can be taken
into account the 8 +6=14 co-ordination of body-centred packing
is permissible) (see fig. 84).

If the atoms (or ions) are of different sizes the greatest number
of the larger sort that can pack around a smaller one must clearly
be less than this, 8, 6, 4, 3 and 2 being lower co-ordination numbers
which occur as the relative size of the smaller atom diminishes.
The condition for the maximum co-ordination number is a purely
geometrical one as Goldschmidt was the first to point out. It
depends only on the ratio 7,:7, where these are respectively the
radii of the small and the large atom or ion. The limits for
4.7, are 0.732 for 8, 0.414 for 6, 0.225 for 4, and o.155 for 3 co-
ordination respectively (fig. 85). For intermediate values of the
radius ratio, the co-ordination must always be that corresponding
to the next lower limit. For example, for caesium chloride,
fas=1.69, 7= 1.81, F'ogif 1 =0.93>>0.732, the co-ordination num-
ber will be 8. For sodium bromide, 7y,=0.95, 7g,=1.95;
xa:TBr=0.49>>0.414, the co-ordination number will be 6; while
for beryllium oxide, #3,=0.31, T1g=1.35, 7'ge:fg=0.23>0.225, it
will be 4.

The co-ordination of the smaller atoms or ions about the larger
cannot be determined so simply, for, in general, the number avail-
able does not approach that required to form a closed group. In
simple cases, however, as in compounds of the type AX (sodium
chloride, fig. 82), AX: (titanium dioxide, fig. 104), or AX; (alumi-
num trifluoride), it is necessarily equal to a half, or a third re-
spectively of the co-ordination of the larger atom around the
smaller. This is the case simply because every bond between A
and X atoms must have an 4 and an X end; the more X atoms
there are compared with 4 atoms the fewer AX bonds can end
on any particular X atom.

The average degree of co-ordination is a measure of the propor-
tion of the total space actually occupied by atoms or what may be -
called its steric density of the structure. The specific gravity
is then the steric density multiplied by the average density of =
the atoms of which the crystal is composed. Thus the metals
aluminum and silver, with approximately the same sized atoms
(r=1.4 A), have both a steric density of 0.73, but the measured
specific gravities are 2.7 and 10.5 respectively because of the -
greater weight of the silver nucleus. The limit of high density is
found for high co-ordination (12, 14), as in the close-packed metals -
whose structures resemble that of a pile of shot. The limit of
low density is given by over-all co-ordinations of 4 or 3, as in the -
predominantly homopolar structures of diamond (steric density
0.34) or boron (steric density 0.37), the loose silicon-oxygen
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framework of quartz (steric density 0.44) and other forms of
silica, or the hydrogen-bonded structure of ice (steric density
0.34). In these cases half or more of the structure is unoccupied
by atoms and rather resembles a kind of three-dimensional net-
work. As will be shown, the holes in such networks can be readily
filled with other atoms, as in the common glasses and in crystal
hydrates.

The general degree of co-ordination has an important bearing on
the ease of crystallization of different structures. With high co-
ordination the successive shells
of neighbours, next neighbours,
etc., are both more numerous and
closer together than with low
co-ordination. The distances in
terms of the shortest distance and
the numbers in brackets are, for
instance, 1 (12), 1.41 (6), 1.73
(24) and 2.0 (12) for cubic close-
packing, and 1 (4), 1.63 (12),
1.93 (12) and 2.31 (6) for the
diamond structure. This implies
physically that nearest neigh-
bours count relatively more for
low co-ordination structures and
that variations in arrangement
and even irregularities make less
difference to the crystal stability.
For that reason high co-ordina-
tion structures usually crystallize
relatively well, and low co-
ordination structures relatively
poorly, tending to form amor-
phous solid aggregates or glasses
in which the arrangement beyond the first neighbours is irregular
(see fig. 86).

Simple Type-Structures—The concept of co-ordination or
the orderly arrangement of atoms around each other in crystal
structures serves as a single unifying principle for classifying all
crystal structures as modifications of a very few basic models.
These models, on account of their simplicity and symmetry, were
in fact the first to be studied in the classical early work of the
Braggs and first set out in The Structure of Crystals in 1913. In-
deed some of them had already been anticipated in the work of the
earlier theoretical crystallographers, E. S. Fedorov and W. Barlow.

SIMPLE STRUCTURES
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Fig. 92.—Two views of the Ses ring
molecule

FACE-CENTRED
(e.g., COPPER)
A

BoDY-CENTRED
(e-8.,IRON)
B

COMPLEX STRUCTURES

HEXAGONAL CLOSE-PACKED
(e-g.. MAGNESIUM)
[
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F16. 93.—ARRANGEMENTS OF NEIGHBOURING ATOMS IN THE STRUCTURES OF
METALS AND ALLOYS

“r-BRASS

Though the geometrical disposition is different, the general high co-ordination
of all the structures is evident

They can all be derived from the three most regular ways of
packing spheres: the face-centred cubic close-packing (fig. 84A);
the hexagonal close-packing (fig. 84C); and the body-centred
cubic packing (fig. 84B). These are actually the structures of
most metals and simple molecular crystals; those of many other
compounds can be derived from them by omissions and substi-
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tutions, or by the insertion of other atoms in their interstices.

From the face-centred cubic close-packed structure the addition
of another atom half way along the cube edges leads to the simplest
of ionic structures, that of rock salt, NaCl (fig. 82), where small
sodium ions fit between every six close-packed chlorine ions (steric
density 0.64). A relatively smaller ion inserted between four
others results in the zinc blende structure, ZnS (fig. 87)—steric
density o.7o—which is also the structure of diamond (fig. 88) with
its tetrahedral co-ordination of carbon atoms.

The hexagonal close-packed structure differs only from the cubic
by the way in which alternate layers of the close-packed planes
are placed relative to each other (see fig. 84D, E), and conse-
quently has the same steric density 0.73. Thus for every structure
derived from cubic close-packing there is a corresponding
hexagonal analogue with the same steric density. For rock salt
there is the nickel arsenide (NiAs) structure (fig. 89B), for zinc
blende the wurtzite (ZnS) structure (fig. 87B), which is also
the arrangement of the oxygen atoms in ice.

From the body-centred structure (steric density 0.68) is ob-
tained, by substituting alternative positive and negative ions for
cube corners and centres, the caesium chloride (CsCl) structure
(fig. goA) or, substituting only half of the positive centres, the
fluorite structure (CaF,), steric density o.57:—see fig. 9oB.

Other simple structures can be formed by substituting molecular
groups or complex ions for the single atoms or ions of the simple
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F1G. 94.—ORDER, D!SORPER ARRANGEMENT IN PLAIN SQUARE LATTICE WITH
EQUAL NUMBERS OF ATOMS OF TWO KINDS

structures. Thus the structure of solid carbon dioxide (fig. )
is essentially a face-centred packing of elliptical molecules OCO.
The iron pyrites structure is one of rock salt in which the 5S group
replaces the simple chloride ion (fig. 91A). Similarly in the cal-
cite structure, CaCO; (fig. g1B), its place was taken by the flat-

0.0 OCO

tened ion C .
- 0

These few simple structures provide between them the models.
of the endless range of more complicated arrangements of atoms
that are to be found in crystals. They are indeed more in num--
ber than the variety of chemical compounds, for each compound
is capable of appearing in more than one—sometimes as many as
five—different so-called polymorphous crystalline forms depend-
ing on the conditions of its formation and growth. In spite of
this diversity the principles of construction of crystal structures
are relatively few and depend essentially on a combination of spe-
cial geometry with the particular physical character of the four
main types of interatomic forces already discussed.

In all but the simplest structures two or more types of inter-
atomic force can coexist, some of the atoms being bound together
by one type of force, others by a different one. In ice, for exam-
ple, the hydrogen atoms are bound to the oxygen atoms in the same
H,0 molecule by homopolar forces, while the molecules as a whole
are bound to each other by the far weaker forces of dipole attrac-
tion (hydrogen bond). In ammonium chloride, NH,Cl, which
has a CaCl structure, the hydrogen atoms are bound to the nitro-
gen by homopolar forces, but the resuiting positively charged am-
monium ion (NHy)+ is bound to the negatively charged chlorine
ion by heteropolar ionic attraction. But whereas in chemistry,
which considers mainly separate molecules and their reactions, it
is the strongest, usually homopolar, forces that are in question, in
crystal structure it is the weakest that determine the existence and .
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properties of the crystal. A chain is as strong as its weakest link.
For this reason two crystals in which the interatomic forces and
the total energy are the same may have widely different properties
if the links between the atoms are differently arranged. Thus dia-
mond (fig. 88A) and graphite (fig. 88B) both consist of carbon
atoms joined together by homopolar bonds, but in the former case
the bonds are all simple bonds and form a three-dimensional mesh-
work resulting in an exceptionally
hard compact crystal, in the lat-
ter they are joined by aromatic
double bonds in two-dimensional
sheets which readily slip over
each other producing platy crys-
tals of unctuous texture (black
lead). Another example is fur-
nished by the contrast in proper-
ties between aluminum trifluoride
AlF;, a hard solid melting at
1,040° C., and silicon tetrafluo-
ride SiFy, a liquid freezing at
—355° C. The forces between Al
and Si and F are approximately
the same but, whereas in the for-
mer case they link Al ions to-
gether, in the latter all four are
bound to one silicon atom form-
ing easily separable molecules.
The degree and kind of spatial
continuity of the stronger and weaker forces in a crystal deter-
mine the general physical type to which it belongs. Four general
types can be distinguished with different degrees of spatial con-
tinuity. These can be conveniently referred to by their Greek
affixes, which are translations of the German terms first introduced
by Weissenberg. They are: (1) neso- types, crystals containing
finite units; (2) ino- types, crystals with indefinitely extended
fibrous units; (3) phyllo- types, with doubly extended or sheet-
like units (4) tecto- types, crystals with trebly extended frame-
worklike units, They may be likened in common experience to a
pile of shot, a bundle of sticks, a pack of cards and a sponge, re-

F1G6. 95.—CEMENTITE

The iron atoms are arranged in a
modified hexagonal close-packed struc-
ture with carbon atoms inserted at the
centres of trigonal prisms

than organic polymers.
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the fibrous character of which is made use of in some kinds of
asbestos. With their side links blocked with organic groups, such
silicon-oxygen chains have found great industrial use as fibrous
or liquid silicones, which are stable at far higher temperatures
In organic chemistry ino- types are
represented by the enormous class of fibrous linear polymers:
hydrocarbons, such as the artificial polythene {Ch,,, or rubber
polyisoprene [CH=CCH;—C],; carbohydrates or polyglucoses
such as cellulose-cotton, linen, wood, rayon and starch; proteins
or polyamino-acids such as silk, wool, horn and leather, as well
as a host of plastics such as nylon and terylene. Most of such
long polymers are crystalline or can be induced to crystallize.

There is a close chemical relation between the linear polymers
and the fibrous crystals they form and the cyclic polymers pro-
duced by the same units joined in rings, but this brings out the
enormous physical difference between them. For example, glassy
volatile SO; has ring molecules—

o o

N

S

VRN

o oo
o5’ 0/
s AN
0 0

- Tni the first or néso- type (Weissenberg’s insel) the stronger ~ with exactly the same composition as the infusible fibres—

/

I
I

/

/

\"\ enes. The most characteristic of this group is the am
“remolite which contains the double chain jon SisOn*—

forces produce finite closed systems, approximately equidimen-
sional molecules or complex ions, which are in turn bound together
by weaker forces. In the simplest case of all, the molecule or
complex ion reduces to a single atom or ion. Crystals of the
neso- type, which includes the vast majority of all crystals, are
roughly isotropic mechanically, that is they show no grain, and if
they cleave do so in three or more nonparallel directions. Such
are, for instance, common salt, calcite, diamond, and crystais of
complex molecules such as camphor, penicillin and strychnine.
Closely related are the irregular structures of normal liquids.

In the second or ino- —chain lattice—type (Weissenberg’s ket-
ten gitter) the stronger forces form indefinitely extended long
molecules, or molecule ions, joined together in bundles by weaker
forces. Inotype crystals are easily cleavable in directions parallel
to the fibres and extremely hard to break across them; they all
show marked grain. Where the fibres are crossed, as in the min-
eral jade or in animal leather, they show great toughness.

The simplest example of ino- structure is that of metallic

selenium which can be written. . . —Se—Se—Se. . . Chain lattices
are found among all chemical groups: among inorganic com-
O 0 O
pounds, in fibrous sulphur trioxide (SO;)...0S0S0SO....;in
0 00
O O O
polymetaphosphates (—=PO;~). . . O P OP OP O...; and in
O O O
0O O O ,
metal silicates (—SiO;—)...Si O Si O Si.. ., such as the pyrox-
O 0 O

T T spectively.
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O O 0
The element sulphur exhibits the whole range of change when it
is heated. Flowers of sulphur contain crumpled ring molecules,.
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On heating, these break open and form the long chains of viscous
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FIG. 97.—SEMIMETAL STRUCTURES TO ILLUSTRATE

BY COURTESY OF (A) BLACKIE & SON LTD.,

further heating give the simple molecule S=S (S;). Sudden
cooling of the viscous sulphur gives rubberlike plastic sulphur
with variously coiled chains which in time curl again into the
stable S; ring molecules of crystalline sulphur. This transforma-
tion of compact into elongated molecular grouping, reversible or
irreversible, occurs in all kinds of linear polymers, particularly in
proteins where it is responsible for the phenomena of denatura-
tion, as in the hardening of egg white by boiling, or in the clotting
of blood. At higher temperatures or in solution linear fibre
molecules give viscous liquids or solutions showing a preferred
orientation of the fibres in relation to the lines of flow. An inter-

~ mediate condition is one where there is a spontaneous parallel
orientation of the fibres giving rise to the nematic or threadlike
type of liquid crystals shown in such diverse substances as
vanadium pentoxide, para-asoxy anisole and tobacco mosaic
virus.

In the third or phyllo- type of structure the layer lattices
(schicht gitter), stronger forces bind the atoms into sheets of finite
thickness or indefinite extent. Such sheets are held together like
the leaves of a book in parallel piles forming characteristic platy
crystals. The simplest example is that of graphite (fig. 88B),
already referred to, with its flat sheets of carbon atoms 1.4 A
apart, arranged in regular hexagons and separated by the much
larger distance of 3.4 A. Plane sheets are also to be found in
the metals zinc and cadmium. Puckered sheets are found in
metallic arsenic (fig. 97B), antimony and bismuth. Among sul-
phides and chlorides layer lattices are common, as in molybde-
nite, MoS, (fig. 9oB), and cadmium chloride, CdCl; (fig. g9A).
They are also found among the hydroxides such as slaked lime,
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molecules. This is the character-
istic structure of all fatty sub-
stances—paraffins, fatty acids,
natural fats (triglycerides) and
soaps, including, besides those
based on single paraffin chains,
the linear ring systems of the
sterols. It is the existence of
sheets in these cases that under-
lies the characteristic greasy and
smearing properties of all these
substances. The sheets persist to
a certain extent in the liquid and
in solution, giving rise to the
smectic (greasy) liquid crystals,
such as are found in the myelin
sheath of nerves, and to the water-soluble miscelles of soap incor-
porating grease which is the basis of its washing properties.

The common characteristic of layer lattices is the single cleavage
which runs across the weaker links separating the sheets. This
is most evident in micas and gypsum. Another characteristic
evident when the forces between layers are relatively weak is the
capacity of the layers to slip over each other while remaining
parallel like a pack of cards. This is the most common basis for
the property of plasticity in certain solids, particularly in clays
and fats. The other group of substances that shows plasticity—
the metals—derives it from the same common structural pattern.
Most workable metals and simple alloys have structures which
can be considered as comprising parallel sheets like the horizontal
layers which are formed in any pyramidal piling of shot. Such
sheets of atoms can slide over each other without destroying the
continuity of the metal structure and crystal physics.

Another characteristic of layer lattices is the readiness with
which they can form what may be called sandwich structures in
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which is the basis, with different amounts of aluminum substi-
‘tuted for silicon, of the structures of micas and clays.

In organic crystals, plane two-dimensional networks of indefinite
size, bound together by covalent forces, are confined to graphite
derivatives, but layer lattices are here formed by the apposition of
linear molecules held side by side through Van der Waals’s forces
into sheets of different thicknesses, these sheets being in turn

- held together by weaker Van der Waals’s forces at the end of the

FiG. 98.—OXIDES OF COPPER

These illustrate the way in which the oxygen atoms are inserted in an expanded
face-centred copper structure and the tendency of the copper atom to linear or
square rather than tetrahedral co-ordination

which atoms and molecules can be attached to the outer surfaces
of each layer and thus come to fill the space bétween the layers.
The interstitial material causes the layer lattice to swell in one
direction only. Thus graphite can absorb some metals, and micas
and chlorites take up or exchange ions.

The most notable example, however, is given by the clays, par-
ticularly those very finely divided hydrated clays, montmorillonite
(bentonite) and tillite—the swelling clays—which play such a
predominating role in the soil. These can take up not only vary-
ing amounts of water and ions, but also incorporate a wide range
of organic substances from fats to proteins. It is this property
that gives these clays, in the form of fuller’s earth, detergent
powers like those of soaps and for essentially similar reasons. '_l‘he
capacity of layer lattices to form sandwich structures is of particu-
lar importance in chemistry. Such substances form the best
catalysts (see CATALYSIS) because the extensive surface and.the
regular arrangements of atoms in them favour specific combina-
tions and dislocations of small absorbed molecules. Thus clays
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are the basis of catalytic cracking and the activated silica and
alumina used in other catalytic processes have been found to have
claylike structures.

The ion- and phyllo- types of relative internal binding are not
absolutely distinct. Some fibrous molecules are not so much cylin-
drical as flat like ribbons, and some sheets are more closely bound
in one direction than another. Thus platelike gypsum can also
be found as fibrous alabaster or as coherent, set, plaster of paris.
Indeed it would appear that the interlaced fibrous character is

MOLYBDENUM SULPHIDE
(MoS;)

CADMIUM CHLORIDE (CdCly)

0o 123 458 OMo'O_S

B

oca Qa
A

F16. 99.—LAYER LATTICES

The arrangements of the layers are based on hexagonal packing and only differ
by the arrangement of 6 Cl ions around a Cd ion in octahedral co-ordination
(A), while 6S atoms are arranged around a Mo atom in the form of a trigonal
prism (B)

necessary to good cementing properties. Set portland cement
or concrete seems also to owe its properties to intergrown ribbons
of the hydrated silicate, tobermorite, CaSiOs.2H,0. The shrinkage
of concrete on drying may be due to loss of water between the sili-
cate layers.

The fourth or tecto- —three-dimensional framework—type
structure is not geometrically distinct from the first or neso- type
in that it exhibits no particularly favoured direction in space and
possesses no marked grain or cleavage. It differs physically, how-
ever, by the looseness or lacelike quality—low co-ordination and
steric densities (usually less than o.5)—of the main structure,
which may or may not contain other atoms or molecules not firmly
bound to it. This type of structure is represented by quartz, the
feldspars and the zeolites among minerals, and artificial varieties
rapidly increasing in scientific and industrial importance at mid-
2oth century. This is because the property of capturing and hold-
ing atoms and molecules gives such substances selective powers,
and because the presence of inserted groups can modify the
properties of the enclosing substance in remarkable ways. Among
metals tecto- types are found in the polyborides, such as Bi3Zn,
which contain frameworks of boron atoms in which the large zinc
atoms are inserted. Of enormously greater importance are the
so-called interstitial metal compounds of hydrogen, boron, carbon
and nitrogen in the ferrous metals of which steel, with its great
range of varieties, is the most eminent example. These, how-
ever, as most of the space is occupied by the metal atoms, are
best treated with other metals and alloys.

Framework structures are found in all compounds where oxygen
ions are shared between two other ions and where these links are
distributed in three dimensions. To this type for instance belong
the multiple derivatives of tungstic -oxide, WQj3, a rectangular
framework in which each oxygen is shared between two tungsten
ions resulting in an openwork structure (steric density .034), in
which there is room for other ions. This occurs among the
perovskite (CaTiOs) structures, of which one member, BaTiOs,
has notable ferroelectric properties. Most typical of framework
structures are the various forms of silica and the so-called tecto-
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silicates of the acid rocks—the superficial volcanic minerals anal-
cite, leucite and the zeolites—where low pressure leads to loose
structures; and the deep, plutonic minerals, feldspars, where high
pressure leads to a collapsed silicate structure and compactness.
The conditions in silicon aluminum oxygen frameworks are favour-
able for the formation of glasses. Here the excess negative charge
of the silica-alumina framework is balanced by positive ions, such
as sodium, potassium or calcium, in the interstices, so loosely held
in some cases that they can be washed out with resultant shrink-
age.

Corresponding irregular structures with homopolar binding are
found in the cross-linked polymer resins, which are now made to
capture ions and thus, for example, by removing in turn sodium
and chlorine ions, are used to filter salt out of sea water, or, in
the form of kryllium as a soil improver. Even more specific
are the regular crystalline compounds in which a relatively firm
framework lattice, maintained by hydrogen bonds, is constructed
to enclose molecules of particular shape and size, the so-called
clathrate compounds. The simplest of these, the cryohydrates,
are built of extended frameworks of water molecules, forming a
kind of expanded ice in the holes of which inert atoms such as
argon, small molecules such as sulphur, or even ions of different
signs, can find a place. The dipolar molecule urea, ~0=C—
(NH,)3, and its derivatives can form a great variety of these with
hollow compartments enclosing,
for example, straight-chain and
not branched-chain hydrocar-
bons. By using asymmetric mol-
ecules for the framework, such as
d- or I- tri-o- thymotide, crystals
have been made that can pick out
and assimilate right-handed from
left-handed molecules. The pos-
sibilities inherent in clathrate
crystals were only just beginning
to be realized in the mid-2oth
century. They promised to pro-
vide the most delicate and spe-
cific of chemical reagents equiva-
lent in their action to picking
molecules by hand.

CHEMICAL CRYSTALLOG-
RAPHY

The considerations so far used
to distinguish the different crys-
tal types have been geometrical
and serve to account for the more
apparent physical appearance and
behaviour of the resulting ma-
terials. An entirely independent
principle of classification is one
based on the chemical nature of
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BY COURTESY OF (A) CAMBRIDGE UNIVERSITY
PRESS, FROM R. C. EVANS “CRYSTAL CHEM.
§STRY,” (B) THE CLARENDON PRESS, OXFORD

F1G. 100.—IONIC CO-ORDINATION IN

GYPSUM

The structure (see fig. ) is shown
in two parts, (A) showing diagram-
matically the lines of force emanat-
ing from positive ions and terminat-
ing on neighbouring positive ions.
The number of lines indicating
roughly the strength of the bond.
(B) The electrostatic valence diagram.
On oxygen ions the total is -2, on
water molecules O

the atoms constituting the crystal
and more particularly on the na-
ture of the predominant type of
interatomic force ultimately re-
sponsible for holding the crystal
together.  This classification,
based on substance rather than
form, divides crystals into four
main categories: (1) metallic;

(2) homopolar; (3) ionic; and
{(4) molecular. The first three roughly correspond to ?he field of
inorganic chemistry, the fourth to that of organic chemistry. The
distinctions between these classes are not sharp and many inter-
mediate cases occur, but they can furnish the basis of a good work-
ing classification.

Such a classification, though essentially chemical, cannot be ex-
pected to follow traditional chemical lines. This is because in the
first three categories, and especially for metals, the arrangement of
atoms in the structure, and even the existence of any particular
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compound, is a consequence of crystallographic geometrical factors
the nature of which was brought out only by X-ray analysis. A
rational theory of alloys and intermetallic compounds was only
made possible by this means, and the same is largely true of the
silicate minerals. With organic substances the case is somewhat
different. Except for very intricate molecules, such as those of
penicillin or proteins, the inner arrangement of the atoms in the
molecule has been, or could be, determined by the methods of
classical organic chemistry, though even there far more detailed
information could be obtained by X-ray methods. The arrange-
ment of the molecules to form the crystal, however, lies beyond
the scope of organic chemistry, and so therefore must the crystal-
lographic classification of organic substances, which must depend
more on the outer form and nature of charged groups than on the
inner structure of the molecules.

Metals and Alloys—Though metals have been used since
the beginning of civilization and their properties well enough un-
derstood in practice, it was only after the application of X-ray
crystallographic methods in conjunction with the quantum theory
that any coherent and rational account could be given of them.
Many of the puzzling features of metal chemistry have been eluci-
dated, particularly the laws of determining the atomic proportions
in intermetallic compounds, which are notably different from those
in the rest of chemistry. In particular Dalton’s law of constant
proportions, which stipulates simple numerical relations between
the number of atoms of different kinds in a compound, does not
apply to metals. The ratios need not be simple and can be vari-
able within wide limits. What defines a compound is not its
formula but the existence of a single phase (in the thermodynamic
sense) characterized by a definite crystal structure but without
definite composition. Such a phase, particularly simple phases
such as those of cubic close-packing (« solid solutions), may con-
tain many kinds of different atoms without changing its identity.

The metal world is indeed both physically and chemically a
world apart. It owes its common features to the defining charac-
teristic of metals, the presence of free electrons, or more correctly
phrased to that of unfilled bands of electrons. It is this that
gives rise to their brilliant appearance and the electrical conductiv-
ity that distinguishes metals from all other substances. For these
are insulators which, though they may be more or less deeply
coloured, are essentially transparent. If all that glitters is not
gold it is certainly a metal of some sort. The free electrons in
metals and alloys furnish the cement which holds the atoms to-
gether. Metals indeed may be considered as compounds between
positively charged ions and pervasive negatively charged eléctrons.
It is the general nonspecific character of this metallic type of bind-
ing that greatly simplifies the chemistry of metals.
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If two metallic atoms are brought close together the determinate
energy levels of their outer electrons open out into bands giving
rise to a net energy loss which serves to bind them together. This
will be the case whether the atoms are the same or of different
kinds. In ordinary language all metal atoms attract each other
irrespective of their nature. The more atoms aggregate together,
forming a crystal or a drop of liquid metal, the more smeared out
do the electron energy bands become. The outer electrons in such
an aggregate are common to the whole system and are no longer
attached to individual atoms. The strength of the binding depends
on the average electronic structure of the constituent atoms. The
structure of the aggregate will also depend partly on this and
partly on geometrical factors such as the sizes of the different
atoms. This results in general in a much greater fundamental
simplicity in metal and alloy structures than is found elsewhere.
There are very few immiscible liquid metals; most metals all run
together in the melt. Different atoms are mixed higgledy-piggledy
and the properties of the liquid are an average of that of its con-
stituents.

In metals the difference between the crystalline solid and the ir-
regularly packed liquid is less than it is in other classes of sub-
stances. The increase in volume on melting is rarely more than
4%, as compared with 209 in the rare-gas liquids, indicating that
the atoms in the liquid must be nearly close packed. The steric
density of a metal or alloy is rarely less than 0.65 and most ap-
proach 0.73. Certainly in all the true metals the crystalline phase
is a close-packed or nearly close-packed one; that is, it is of the
cubic close-packed, hexagonal close-packed or body-centred type.
These three types comprise them the structures of the great ma-
jority of metals and alloys, and a large number of more complex
structures are simply slight variations of one or another of these,
or represent intermediate arrangements (fig. 93). There is little
difference in internal energy between these three structures, as wit-
ness the fact that a considerable number of elements, e.g., Fe, Ca,
Co, Ce, Cr, La, TI, are known to occur in two of them and the ele-
ment Sr occurs in all three. Thus pure iron is body-centred up to
g06° C. («, magnetic, and (3, nonmagnetic ferrite, phases) when
it changes to the face-centred variety (v, austenite, phase), but re-
verts to the body-centred ( 6 phase) at 1,403° C. The presence of
slight impurities moreover can make either the o or the § phase
stable over a far wide range of temperatures. In the case of cobalt
the face-centred and hexagonal close-packed forms are so much
alike that without special precautions a specimen will contain por-
tions having both structures.

The feature of approximate close-packing and indifference as to
atomic neighbourhoods is common to all metals. To differentiate
between them account must be taken of differences in electronic
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structure and in atomic size. The first affects the physical nature
of the resulting metal or alloy; the second determines the geom-
etry of possible arrangements.

Metals have been defined as substances with unfilled electronic
bands. In this respect they may differ by the degree to which the
levels are unfilled and by the number of bands available for filling.
The classification of metals along these lines follows the periodic
table (see Table II). Three major groups are distinguishable,
The simplest metals, those of the alkalis and alkaline earths—the
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F1G. 102.—CLOSE-PACKED ANION STRUCTURES DERIVED FROM THE CUBIC—
ROCK SALT—TYPE ’

The anion (oxygen ion) packing is the same cubic close-packing in all three
cases. In (A) one complete set of octahedral holes is occupied by Mg2+ ions.
In (B) one out of every three layers of La3+ ions is omitted—the second in
this case. In (C) the octahedral holes in the first layer are occupied by Al3+
fons, one in four being left vacant. In the second layer there is an even dis-
tribution of metal ions with two Mg2+ jons in tetrahedral holes and one Als+
in an octahzdral hole :

A-group metals—have one or two electrons in one unfilled band.
These electrons are most loosely bound and the metals are the most
electropositive.

The next group is represented by the corresponding B-group
metals of the first to the sixth columns of the periodic table, such
as Cu, Zn, Ga, Sn, Sb, Se. These, as the number of electrons in-
creases, tend to fill up the vacant electron band and even, in the
latter columns, tend to borrow electrons to complete them. These
metals are correspondingly intermediate through a semimetal state
to electron-sharing homopolar compounds. The metals of the first
two columns, the coinage metals, Cu, Ag and Au, and Zn, Cd and
Hg, behave very similarly to the A group and so in some respects
do Sn and Pb.

Between these two groups is the large group of the transitional,
or group T, metals, ranging from Ti to Ni, from Zr to Pd, and
from Hf to Pt, with which may be included the metals of the rare
earths. All these are characterized by having two unfilled electron
bands with an easily alterable equilibrium between them. - This
leads to increased binding between the atoms, small interatomic
distances, high melting points, hardness and poor electrical con-
ductivity. The marked difference between the metals of the A and
B groups on the one hand and the transitional group on the other
provides the scientific basis for the great technical division between
nonferrous and ferrous metals. Nearly all the metals used for al-
loy steels belong to the transitional group.

The laws of alloy formation are easier to understand if a metal
phase is considered as a compound between atoms, disregarding
their differences, and free electrons. The effective electron/atom
ratio is generally more important than the ratio between the num-
ber of atoms of each element present—the ratio that dominates
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other fields of chemistry. This is, for example, the explanation
of the similarities between the compounds of the coinage metals
(and some of the transitional metals) and A- and B-group metals.
Thus in the so-called ¥ brass compounds Mn} Zn23, Fel Zn23, Cus
Zn'g, Cuj A, Cul! Sn® (Cu,, Sb,) (the superior numbers stand
for the contribution of the metal atoms to the common electron
pool), though very different in apparent formulae, all have the
same complex structure with 52 atoms in the cell. However, as
Hume-Rothery pointed out, the number of free electrons available,
counting none for T metals, one for Cu, 2 for Zn, 3 for Al and 4 for
Sn, is 84 per cell in each case, so that the general formula could be
written Mises;, where M stands for the metal atoms indiscrimi-
nately and ¢ for the free electrons. H. Jones explained the stability
of this and other analogous compounds, such as the body-centred
M ze3= M 1se,; or the hexagonal close-packed M se;= M 1ze5, in terms
of the filling of a so-called Brillouin zone in electron levels, which
confers low energy and high stability.

This treatment brings out the characteristic of metal structures
of having a common pool of electrons which may be provided by
some atoms and taken up by others. Thus in the Heusler alloys
(copper-aluminum-manganese alloys), which are ferromagnetic
though they contain no iron, the presence of copper and possibly
of aluminum is sufficient to raise the electronic level of the man-
ganese to that of iron. Another interesting case is furnished by the ‘
different forms of manganese. The first of these forms,  , has 58
atoms in a cubic cell in a structure which is a complex variant of
close packing. This is also the structure of the alloy Al,Mgs.
Similarly, the second, 8, has 20 atoms in a cubic cell—also nearly
close-packed—and is identical with that of the alloys Ag;Al and
CasSi.  This strongly suggests that in these forms manganese is
not behaving as a simple element, but rather as an alloy of two
kinds of atom, one with more and one with fewer electrons.

Easy substitution of different atoms is, however, only possible
if these are of approximately the same size. This holds for most
of the transitional elements which only range in atomic radius
from 1.60 to 1.25 A, all but five being less than 1.41 A, and explains
the mutual alloying possibilities of the ferrous metals. Where the
size differs, notably with respect to the alkali metals (the radii of
Li, Na and K are 1.56, 1.91 and 2.38 A respectively) and to a lesser
extent to Mg and Al, structures are largely determined by consid-
erations of packing such as those of NaK, MgZn,, Cu,Mg and
CuAl.

The technical importance of metals is largely dependent on their
mechanical properties, particularly their plasticity—malleability
and ductility. This in turn depends on the possibility of the exist-
ence of extended planes of atoms capable of slipping over each
other, which can only occur in the simplest structures of the face-
centred, body-centred and hexagonally close-packed types. Com-
plicated intermetallic compounds, lacking such glide planes, are
invariably brittle and of little use except when extremely hard.
The greatest interest is therefore concentrated on such simple
phases as those whose properties can be modified either by the
substitution of some atoms or the addition of others. These two
types of solid solution are the basis of most useful alloys, substitu-
tional among the nonferrous metals (as in brasses, bronzes and
duraluminum) interstitial in the ferrous (as in steels).

In most simple metal structures the atoms of one kind can be
substituted for another without changing the basic crystal struc-
ture. These are solid solutions. This may be done to an unlimited
extent, as in the case of silver and gold with their almost identical
lattices (a=4.078 and 4.070 A respectively), or on a very limited
scale as in duraluminum (limiting solubility of copper in aluminum
1% at room temperature). The resulting alloy is modified in one
respect by a change in electronic level which may tighten or loosen
the whole structure, and in another by the irregularity introduced,
which, by interfering with easy glide, hardens the structure as well
as raising its electrical resistance.

In certain cases prolonged annealing removes this irregularity
and leads to an ordered substitution solution (see fig. g4) in which
the different kinds of atoms alternate in regular sequences. The
ordering removes the obstructions and leads to softening and in-
creased electrical conductivity. The compounds Fe;Al and CusAu .
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are examples of such order, which is revealed by X-rays through
the appearance of so-called superlattice lines. Permalloy, FeNis,
is an example of a particularly useful ordered lattice. In most
cases the range of solid solubility is greater at high temperatures.
On cooling one constituent is precipitated, but if this process is
slow enough it occurs in the very body of the lattice of the other in
the form of fine plates only a few atoms across. The strains these
set up in the lattice interfere markedly with glide, and this process
provides the basis for many age-hardening techniques.

One characteristic of the transitional metals is their ability to
incorporate in their lattices small quantities of the elements of the
top row of the periodic table, H, B, C and N. When present in
small enough quantities these elements fit into the interstices of
the metal atoms slightly increasing the average distance between
them and giving rise to interstitial solid solutions. It is probable
that to do this the small atoms part with most of their electrons to
the free pool of the metal and are reduced to ions of a fraction
of an Angstrom unit in diameter. An example of this is the inter-
stitial solution of hydrogen in solid palladium in the form of pro-
tons which can move freely through the metal. In larger propor-
tions interstitial atoms usually stabilize some arrangement other
than the normal metal and form interstitial compounds such as the
extremely hard WC, used for tools, or the carbide of cast iron,
cementite, Fe;C (fig. g5). .

An intermediate state of great importance is found in the iron-
carbon system. The solubility of carbon in face-centred +-iron
(austenite), stable above goo® C., is relatively high (1.7%), while
that in « iron (ferrite) is very low.

On slowly cooling saturated +-iron, the carbon comes out as
cementite, but on rapid cooling the mixture turns into an unstable
tetragonal compound, martensite, containing carbon, intermediate
between austentite and ferrite and approaching the latter more
closely as the carbon content falls (fig. 95 and ¢6). (For 1.5%
Ca=283 A c=304 A; foro79% Ca=285 A4, c=2.94 A; for
ferrite a=2.86 A.) The plates of martensite are keyed to the fer-
rite so well that the effect of the strains caused by these slight dif-
ferences is to brace and harden the structure. By reheating and
suitable quenching, the size and distribution of the martensite
crystals can be controlled, and this is the basis of the tempering
of steel. Corresponding changes can be carried out using nitrogen
in casehardening. For the last 3,000 years these processes have
been successfully carried out without any inkling as to their nature.

Semimetals.—The boundary of the metallic structures is a par-
ticularly hard one to draw, as has been long recognized in the terms
semimetallic and submetallic. Usually a set of substances can be
found with properties intermediate between what is undoubtedly
a metal, such as lead, and what is undoubtedly not, such as dia-
mond. The same element (e.g., selenium) may function some-
times as a metal and sometimes as a nonmetal. The most valid
criterion is the electrical one based on the presence of unfilled
electron shells and showing itself in a metallic type of conductivity,
absolutely large and decreasing with temperature. Many sub-
stances, such as iron pyrites, having a metallic appearance reveal
their nature by the semiconductor type of conductivity, small and
increasing with temperature.

Elementary metals and compounds between metals may lose
their metallic character by changes in-two different directions,
one in that of ionic and the other of homopolar compounds. The
first occurs when metals of electropositive character are combined
with those of electronegative. In this case positive and negative
ions tend to'be formed, as for example in Mg.Si and Mg,Sn, which
have an ionic fluorite (fig. goB) type of structure. The formation
of such ionic compounds is usually revealed by their exact com-
position and their stability.

On the other hand, the tendency to form homopolar compounds
is practically confined to the compounds of the B-group metals
among themselves and to the compounds of the transitional metals
with fifth-and sixth-column elements. Wherever the possibility
exists to complete the particularly stable eight-electron shell by
electron sharing this will lead to structures whose space directed
valencies show their homopolar tendency. This is the basis of the
so-called (8-¥) rule among the semimetals. It states that if N is
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the group position in the periodic table, or the average group
position of an element, or of the elements, in a homopolar com-
pound each atom will tend to make (8-V) homopolar bonds shorter
and stronger than any other it may make of a more metallic char-
acter. Thus the halogens (column 7; 8-N=1) can only form one
and must therefore exist as diatomic molecules though the heaviest
of them, astatine, may well be a metal. The sixth column (8-N=
2) can form chains or rings: selenium and tellurium form struc-
tures with two short bonds, 2.32, 2.86 A, and four long, 3.46, 3.74 A
(fig. 97A).

In the fifth column for As, Sb and Bi, (8-N=3), three short
bonds (2.51, 2.87 and 3.10 A) are formed and three long (3.15,
3.37, 3.47 A) (fig. 102B). The fourth column (8-N=4) is transi-
tional; C, Si and Sn (gray) are purely homopolar with only four
tetrahedral valencies. In white (ordinary) tin (fig. 97C), how-
ever, the metallic character asserts itself by the collapse of the
diamond structure along one of the cube axes leading to a structure
with four short bonds (3.02 A) and two long (3.15 A). With lead,
as in general with the multiple electron atoms at the lower part of
the periodic table, the structure is purely metallic.

Apart from these transitional forms of the elements, there is one
widespread structure intermediate between metallic and homopolar
types, namely that of nickel arsenide, which is another six-co-
ordinated structure (see fig. 89B) where each arsenic atom is sur-
rounded by six nickel in an octahedron, while each nickel is sur-
rounded by six arsenics in a trigonal prism, this being the hexagonal
variant of the rock-salt structure.

Homopolar Crystals.—Structures in which the atoms are held
together throughout by homopolar forces are rare, as they form a
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FIG. 103.—CLOSE-PACKED ANION STRUCTURES BASED ON THE HEXAGONAL
—NICKEL ARSENIDE—TYPE

The anion—arsenic—arrangement is the same hexagonal or pseudohexagonal
close packing in all cases. In (A), nickel arsenide, a complete set of octa-
hedral holes is occupied in each layer but here, unlike fig. 89 (A), the nickel
atoms on every layer are superposed. In (B), corundum-haematite, one in three
of the octahedral hol!es in each set in each layer is ieft vacant. In (C), olivine,
which has an orthorhombic pseudohexagonal structure, half the octahedral holes
in each layer are filled with Mg2+ ions and in addition Sit+ occupy tetra-
hedral holes

relatively narrow transitional zone between the metals on the one
hand and the ionic compounds on the other, and except for the
diamond group all partake of one or the other nature. Although
in quantity they do not compare with ionic compounds, as the min-
erals of the sulphide ores they are of great economic importance.
Most of the structures, because of their simplicity, have already
been described in this article. The type structure is that of the
diamond or of zinc blende (fig. 87A), characterized by its fourfold
co-ordination. It is found for all binary compounds with atoms
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equidistant from the fourth column of the periodic table, e.g.—
I vII IT VI III V IV 1V
Cu Br Zn S Ga As Ge GI

that is, with an electron atom ratio of 4:1 and wide substitution,
and can occur as long as that ratio is preserved. Where this is
ordered, distinct minerals such as chalcopyrite, CuFeS,, and stan-
nite, Cu;FeSnS,, are formed. A variant almost equivalent struc-
ture is that of wurtzite (ZnS; see fig. 87B) the hexagonal dimorph
of blende. It has also a number of derivatives such as emargite
Cu3AsS,, and wolfsbergite, CuSbS,. The blende and wurtzite
types can co-exist in the same crystal in a great variety of ways, as
exemplified in the different forms of the most typical homopolar
crystal, carborundum, CSi. Another variant found in the platinum
and copper group is for the bonds to be arranged in a square rather
than a tetrahedron. Cupfic oxide (CuQ), tenorite, has a deformed
square co-ordination. In cuprous oxide (Cu;0), cuprite, the struc-
ture is still further simplified by copper’s having two oxygen neigh-
bours only;‘} Both may be considered as interstitial compounds of
' Homopolar crystals are also to be
ound in the ino- (fibre) form, either simple as in the case of cin-
nabar, HgS (S-Hg-S-Hg-S. . .), double as in stibnite, Sb,S;, or
consisting of linked tetrahedra in silicon sulphide SiS;,—

T i

and also in the phyllo- (sheet) form both in the Cdl, and MoS,
structures (fig. gg). ’

In most homopolar structures apart from elements, bonds are
formed between unlike atoms. In a small but important group
however bonds are formed between atoms of the same kind as well.
This is the case in the iron pyrites structure where sulphur atoms
are attached in pairs—each being bound in addition to three iron
atoms (fig. 91A)—and in its lower symmetry dimorph, marcasite.

The particular characier of homopolar structures, intermediate
as they are between ionic and metallic, shows itself in their electri-
cal properties. Nearly all are semiconductors, and many show
anomalously high photoconducting, fluorescent, phosphorescent
thermoelectric and diamagnetic properties. All these properties
derive from the existence of electron bands just under- or just
over-filled with electrons and for that reason peculiarly susceptible
to the effects of impurities and lattice defects. These properties
were increasingly made use of in photocells, fluorescent lighting
and television, and in transistor substitutes for electronic valves.

Ionic Structures, Salts and Stones.—The special fixed char-
acter of these substances has long been recognized. If, of the old
tria prima of the alchemists, fluid mercury is the common nature
of the metals, and fiery sulphur of the homopolar compounds, then
fixed salt is the common nature of the ionic compounds—the salts
and stones, the acids and alkalis of everyday life. Ionic com-
pounds are characterized by the presence in them of charged rather
than neutral atoms. The ions of which they are composed are held
together by mutual electrical attraction and the crystals can ac-
cordingly be decomposed by the action of other ions or electrical
dipoles. Where the attraction is relatively weak (with large and
low-charged ions) they are all soft, easily fusible and soluble in
water; where it is strong (with small and highly charged ions) they
are hard, melt at high temperatures and dissolve only in fused
soda. In chemical terms, the vast majority of ionic compounds
are those of metals with elements of the sixth and seventh columns
of the periodic table of which by far the most important is oxygen,
either simple as oxide or as oxy- acid, and after that the halides—
fluorine, chlorine, etc.

Because they contain no partially filled electron bands ionic
compounds are generally transparent and coloured only if they
contain coloured ions with unfilled inner electron shells, such as
the blue ions of copper, or the brown and green of iron. They
usually crystallize well and are familiar to us as crystals of salts or
as gem stones and rock crystal. It is impossible to describe here
the great variety of ionic crystal structures—several thousand are
known—but something can be said of the general principle of their
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construction and of a few of the most important structures.

The first guiding principle is that of the co-ordination of atoms
~—or, here, of ions—of determinate size. Here, in addition, as the
elementary consequence of the existence of charges of two kinds,
is the requirement that negative ions must be co-ordinated around
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FIG. 104.—TITANIUM DIOXIDE STRUCTURES

Both structures are based on co-ordination octahedra of O~ ions around Ti¢+
ions. The difference fies in the way the octahedra share edges. In (A), rutile,
two diametrically opposite edges are shared, shown by double line. Here the
arrangement of O- ions is a slightly distorted body-centred packing. In (B),
anatase, four edges of the octahedra are shared, leading to a less stable struc-
ture

positive, and vice versa. Because, with a few exceptions, positive
ions are smaller than negative ones, it is easier to think of negative
ions packed around positive ones up to the number limited by their
mutual repulsion. The precise number—3, 4, 6, 8, 9 or 12—is
given by the radius ratio rule discussed above.

The arrangements of the positive ions around the negative can
only be determined directly in simple cases where there is one sort
of ion of each sign. In general it depends on secondary considera-
tions which were first set out explicitly as Pauling’s rules in 1928.
These are expressions of the condition of minimum electrostatic
energy of an assembly of positive and negative charges which, ex-
pressed in Faraday’s visual terms, consists in making the sum of
the lines of force as short as possible. Pauling calls the electro-
static valency the charge of a positive ion divided by the number
of negative ions immediately around it. This is proportional to
the lines of force going to each. Thus an ion of aluminum (charge
3) surrounded by six oxygen ions will give an electrostatic valency
of §=4, whereas one of potassium surrounded by 12 oxygen atoms
will only give ;. Pauling’s rule simply states that the sum of
electrostatic valencies around any negative ion must be nearly
equal to the charge on that ion. This must, of course, be true
on the average on account of the over-all equality of positive and
negative charges, but for stability it must hold as near as possible
for every ion, or in terms of lines of forces, all should begin and
end on neighbouring ions (fig. 100). Ionic structures may be con-
sidered as consisting of polyhedra of negative ions, each surround--
ing a positive ion (fig. 101). These polyhedra can be linked to-
gether by the sharing of corners, edges or faces. In the latter two
cases, owing to the repulsion of the positive charges, the negative
ions will be squeezed closer together or the corresponding polyhe-
dron edge shortened. Pauling’s rules have not only been used
to give a reasonable account of almost all ionic structures but in
many cases to predict them in advance of crystal analysis. Their
success bears witness to the essential simplicity of ionic structures. .
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Tonic structures can be divided into two main groups. The first
contains those in which the interionic forces between different ions
are more or less of the same strength. These are the simple or
mixed oxides and halides in which the electrostatic valency is never
more than half the charge on the negative ion—one for oxides,
a half for halides. In the second group, the presence of high posi-
tive charges and small ionic radii lead to very strong electrostatic
valency greater than half the charge on the negative ions. This
produces distinct complex ions, such as the oxy- ions—nitrate, car-
bonate, sulphate, phosphate, etc.—which are often stable as such in
solution. Indeed, in these cases it may be more correct to think
of the forces inside the ion as homopolar, though the crystal struc-
ture of the resulting salt is still ionic as the complex ion carries a
charge all over its surface. These two groups are not absolutely
distinct. The borates, silicates, tungstates, etc., where the electro-
static valency may be exactly or nearly, half the negative charge,
might be attached to either group. As this condition is one which
leads to extensive linking of the negative ions through common
oxygen atoms, it is convenient to treat it separately as an inter-
mediate group represented most extensively by the silicates.

The general principle of arrangement for salts without complex
ions is that of approximate close-packing of the large negative
ions with the small positive ions fitting into the interstices between
them. This principle breaks down when positive ions are large,
that is, when the co-ordination is greater than six times that of the
largest hole of a close-packed structure, as, for instance, in the
caesium chloride structure, or when the negative ions are highly
polarizable, in which case layer lattices such as CaCl, are formed.
Even there, however, the conditions of close packing may be ob-
served, though whole layers of negative ions are held together only
by dispersion forces.

Of the structures based on cubic close-packing the type is that
of rock salt which is that of most simple halides, oxides and sul-
phides of the general formula AX (see fig. 102A). Here the metal
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atoms are placed in all the six co-ordinated holes of the structure.
Where the positive ions are relatively smaller or have more po-
larizing power, the four co-ordinated holes are filled as in zinc
blende, but there the structure is more homopolar than ionic.
If one out of three metal layers is omitted the result is the so-
called A sesquioxide structure 4,X; of the rare earths (fig. 102B).
With mixed oxides some of the six co-ordinated and some of the
four co-ordinated holes can be filled, the commonest of these struc-
tures is that of spinel, MgAl,Q4, which is also that of the black iron
oxide, magnetite, FeFe,Os (fig. 102C). Corresponding structures
are to be found in the hexagonal close-packing array where alter-
nate layers of negative ions are found superposed. The six-
co-ordinated rock salt analogue in the hexagonal series is nickel
arsenide (fig. 103A), the four-co-ordinated zinc blende analogue is
the wurtzitelike structure of beryllium oxide. Filling two out of
three of the six co-ordinated holes gives the extremely compact
structure of corundum, Al,O;, met as the gem stones, ruby and
sapphire, and also that of red iron oxide, haematite (Fe.O;)
(fig. 103B). The hexagonal analogue of spinel is olivine, Mg,SiOy,
with the magnesium ions in the sixfold and the silicon in the four~
fold position (fig. 103C). This crystal structure, or possibly an
even more compact high-pressure form, forms the bulk of the
earth and of most planetary bodies and is consequently the com-
monest crystal structure in the universe.

Only one important structure is based on a body-centred
cubic arrangement of anions, that of TiO,, rutile, or SnOs,, cas-
siterite, with one out of three of the possible six co-ordinated
vacancies occupied (fig. 104A). Two important structures can be
derived from a simple cubic packing of anions, those of CsCl and
CaF, (see fig. go). A variant, anatase (fig. 104B) differs only irom
rutile by a different arrangement of co-ordination octahedra.

The types of structures with complex ions must necessarily be
far more numerous than those with simple ions, but they are not
necessarily more difficult to understand if, as mentioned above,.
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the complex ions are treated as simple to a first approximation.
The great majority of complex ions are oxy- ions, that is, consist
of metallic or nonmetallic atoms completely covered by oxygen
ions bound by very strong ionic or by homopolar forces. Complex
ions can be mononuclear when several oxygen (anions) are bound

CO-ORDINATION OF CARBONATE 10N
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F1G. 106.—ARRANGEMENT OF IONS IN CALCIUM CARBONATES

(A) In calcite each calcium atom is surrounded by six oxygen atoms belonging
to six carbonate ions on two different layers. (B) In aragonite each calcium
atom is co-ordinated with nine oxygen atoms belonging to six carbonate ions
on four different layers. Each carbonate group is co-ordinated with six calcium
atoms in both cases but in calcite (A) each oxygen has two calcium neighbours
while in aragonite (B) it has three. The fractions indicate the electrostatic
valence

to a single cation as in — SOy, sulphate, or polynuclear linear as
in the —$,0,—=(=0; S O S O;) pyrosulphate, or cyclic as in the
trimetaphosphate ion, —P3;0s5™—
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Other polynuclear ions can be formed by linking the nuclei
directly, as with the dithionate ion S,03~
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The commonest ion types are shown in fig. 105. The two major
mononuclear types are the triangular ions BOs~~—, CO3~~ and
NO;~, and the tetrahedra ions SiO:—, PO;~, SOZ~and ClO;. The
members of each group have the same size and number of elec-
trons and differ only in charge. Thus, if combined with the same
number of positive ions of the same size they give similar struc-
tures, as for example do calcite, CaCO,, and sodium nitrate,
NaNOj;. Calcite, the basis of shells, chalk, limestone and marble,
is the most important of this group. The same chemical compound
also crystallizes with a different crystal structure, as aragonite
(fig. 106). The difference is merely that the calcium ion is co-
ordinated with six oxygen atoms in the first case, and nine in the
second. The aragonite form, in which the calcium atom has more
room, is the form which is stable at higher temperatures. An
example of a structure with tetrahedral ions is given in anhydrite,
CaSO, (fig. 107A). The analagous structure with higher cation
co-ordination is the highly insoluble barytes or heavy spar,
BaSOq, the basis of the X-ray barium meal. Occasionally. a par-
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\ ticularly good fit is achieved in a highly symmetrical structure

requiring an odd assortment of ions of different kinds. This is
the case for the extremely stable apatite, Cas(POy)sF, the struc-
ture of rock phosphate and tooth enamel. The fluorine ion needed
to balance the charge can be replaced by hydroxy- (OH) giving
rise to the slightly weaker structure of bones and teeth.

Highly complex polynuclear ions can be formed by linking
together six co-ordinated groups through their oxygens. These
can form virtual baskets stabilized by smaller ions at the centre
(fig. 108). Such are the phosphotungstates (PWi0g)® in which
vertical ionic radius is 5.2 A.

The most complex ionic structures are those in which, though
positive ions of different charge exist, it is impossible to dis-
tinguish finite complex ions. These form essentially three series
in which the minimum co-ordination is three, four and six respec-
tively, of which the borates, silicates and tungstates (fig. 109)
are typical. Of these the silicates are far the most important
and best studied. The principles of classification of the silicate
structures have already been mentioned; they turn on the spatial
extension of the silicon oxygen framework and correspondingly
with the increasingly acid—silica-rich—character of the com-
pound. When the silicate ions are isolated the result is the neso-
silicates analogous to normal tetrahedral complex ion structures
(fig. 105G), of which olivine (fig. 103C), Mg:SiOy, is typical.
Next come the inosilicates with chains of the form

0
O—?i—O—-?i—O —_
o} 0 e

(fig. tosM) characteristic of the rock-forming fibrous pyroxenes
(fig. 110) and amphiboles of which hornblende is the most com-
mon example and asbestos the most useful. When the chains
are curled into rings (fig. 105L), as they are in beryl, the gem
stone emerald (Be;Al:SisOis), the fibrous character disappears but
holes are left through which small atoms such as helium can pass.
Next come the platy phyllosilicates (fig. 1050) of which mica,
K ALy(OH),Si;AlO5—see fig. 111—is the commonest mineral and
clay, Aly(OH)Si,048H:0, the most common weathering product.
Finally there are the tectosilicates (fig. 105P and 111) with their
extended frameworks, the feldspars such as orthoclase, KAlSizOs,
and the zeolites—such as sodalite, NasAl;Sis0. NaCl, or its
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F1G. 107,—CALCIUM SULPHATE

(A) anhydrite, CaSOs, the arrangement is of a distorted NaC! type (B) gyp-
sum, Ca$0:.2H20, the arrangement is essentially one of layers of anhydrite sepa-
rated by layers of water. For electrostatic valence pattern see fig. 88

sulphur-containing variant, lapis lazuli—leading to silica itself as
the end member.

Silica occurs in a great variety of forms, all having in common
the tetrahedral —SiO, group joined through its corners to four
others (fig. r13). This may be done irregularly as in silica glass, .
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in the most expanded form of tridymite and cristobalite found in
volcanoes and in crystalline opal, or in its most compressed form
as quartz, commonly met in sand or flint. The quartz structure
with its spiral twist has found many uses both in optics and in
piezoelectric oscillators.

Role of Hydrogen and Water.—So far in discussing ionic
compounds one most important ion has been omitted. That is
the positive hydrogen ion, H, which is, in its free state, nothing
more than a simple proton. In the presence of other atoms the
simple proton never appears
but is always masked by a neg-
ative charge collected around it
within the outer region of the
nearest atom. The negative hy-
drogen ion H~™ possesses two
electrons and behaves in its salts
not unlike the negative fluorine
ion. In its compounds with most
nonmetallic atoms hydrogen be-
haves as if bound homopolarly
and is externally inert as, for ex-
ample, in the paraffins. Three
atoms however, form important
exceptions—nitrogen, oxygen
and fluorine. Hydrogen com-
bined with these—in the alkaline ammonia, NHj, the neutral water,
H,0, and hydrofluoric acid, HF —is sufficiently near the surface of
the atom to exert a powerful external electrostatic attraction as
the electron cloud surrounding it only neutralizes about half of its
positive charge. Further, hydrogen can leave the neutral mole-
cule, giving the negative ions OH~ (hydroxyl) and F~ (fluorine), or
can join it, giving the positive ion NH?, ammonium, or OH!,
oxonium—the form of the “hydrogen ion” in water solutions.

The key to the behaviour of hydrogen is furnished by the forms
of the old “element” water—as steam, water and ice. In steam
the molecules are isolated. The two hydrogen atoms are not at its
opposite poles, but form a dog-legged arrangement (fig. 114),
with two positive charges located on the hydrogen atoms and
two more diffuse negative charges at the opposite end of the
molecule, forming an electric dipole analogous to a magnet. It
is these dipoles that make water condense so readily despite the
lightness of its molecule—it is no heavier than neon, which is a
gas condensing at —248.67° C.; even hydrogen sulphide, H,S,
which is nearly twice as heavy, is a gas condensable at —61.8° C.
In ice the molecules are arranged regularly but very loosely in a
wurtzite structure (fig. 115), in which each is surrounded by four
others at a distance of 2.76 A arranged so that the two positive
regions of one molecule link with negative regions in two neigh-
bouring molecules, while the two negative regions are linked with
positives from another two neighbours. These links, in which a
hydrogen atom attached to oné oxygen atom is linked with
anogher oxygen, are called hydrogen (or hydroxyl) bonds. This
is strictly a misnomer as the bond is really one of electrostatic
polarization and not of electron interchange as in a true homo-
polar bond. Expressed in electrostatic valency as due to a hy-
drogen ion with its single charge and two neighbours, the strength
of a hydrogen bond is exactly one-half. The shielding of the H
ion, however, reduces this in most cases to values nearer one-
eighth.

The concept of the hydrogen bond explains roughly most of the
properties of compounds contiining water or hydroxyl, such as
clays, alcohols and carbohydrates, as well as those of acids and
alkalis. When ice is melted the regular loose structure of steric
density o.37 is turned into an irregular one still bound together
by hydrogen bonds but in which the molecules are more closely
packed owing to the greater play of dispersion forces. This ar-
rangement accounts for the expansion of water on freezing as well
as for the existence of a temperature of maximum density of
water. As water is heated, much of the energy goes into breaking
hydrogen bonds, accounting for the large specific heat, but far
more must be broken on boiling which gives steam its very high

FI16. 108—PHOSPHOTUNGSTIC ION
The oxygen ions (a) are co-ordinated
to both P and W atoms, those marked
(b) to two W atoms only. Remain-
ing O atoms co-ordinated to one W
atom are omitted for clarity
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latent heat.

The electric dipoles of the water molecules link together
throughout its whole structure and can be orientated this way
and that in groups by eleciric ficlds, which accounts for the high
dielectric constant of water. It is also the explanation of its great
solvent power, which is, in fact, limited to hydroxic compounds,
alkalis, acids, sugars, etc., and ionic salts. It is notoriously
feeble toward nonionic substances such as fats and paraffins.
The water molecule dipoles attach themselves around positive
and negative ions, lowering their effective charge density and
producing hydrated ions (fig. 116) which, for highly charged ions,
are extremely stable.

The water of crystallization, which is so common in ionic crys-
tals, may exist in a number of geometrical arrangements, but in
all cases the water molecules act as a kind of dielectric distance-
piece between ions of opposite sign (fig. ). Most water mole-
cules, if bonded to a positive ion with an electrostatic bond of

strength ;c make bonds to two negative ions, each bond being of

1
strength Py Thus the presence of water lowers the average

strength of electrostatic bonding. The water molecules may be
arranged as isolated molecules, around ions as shells as in alum,
K(OH;)sAl{OH,)¢,(SO4)s, in strings, in sheets as in gypsum,
CaS042H,0 (fig. 100 and 107B), or as a continuous framework
as in the cryohydrates (fig. 115C).

The hydroxides, ranging from strong alkalis such as potassium
hydroxide, K(OH), to strong acids such as sulphuric acid,
0:S(OH); (= H,S0.), and perchloric acid, O;CI{OH) (=HCIO,),
illustrate the effect of the attached atom on the bonding power
and stability of the hydrogen atom. In the absence of a strongly
polarizing ion, that is, for the alkali and most alkaline earth
hydroxides, the hydroxyl ion is stable—has no tendency to lose
hydrogen—and has a minimum power of forming hydrogen bonds
even less than exists in water. In KOH, LiOH and Ca(OH)
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BY COURTESY OF DR. HELEN D. MEGAW AND THE PHYSICAL SOCIETY

FI1G. 109.—PEROVSKITE STRUCTURE, CATIOs
(A) shows the Ti0s (Re0s, WO0s) framework of oxygen octahedra sharing cor-
ners; (B)3 the co-ordination 6-fold of the Ti*+ ion and the 12-fold co-ordination
of the interstitial Ca2+ ion

with increasing polarizing power of the cation the OH-OH dis-
tances are respectively 3.26, 3.60 and 3.36 A as compared with
2.76 A in water. In the hydroxides of strongly polarizing ions,.
elements of the fifth, sixth and seventh groups of the periodic’
table, the high positive charge on the ion repels the hydrogen
of the hydroxyl group. It may drive it off altogether if there is
a hydrogen ion acceptor present, such as water, giving rise to
a negative oxy- ion. In the acids themselves (see fig. 117C) it
increases the effective charge of the hydrogen ion and leads to
the formation of strong hydrogen bonds of lengths 2.5-2.6 A&,
less than that in water. When these can link up throughout the
structure, as in sulphuric acid, 0,S(OH,), with two donors and
two acceptors of hydrogen, the result’1s a stable, viscous and
high-boiling-point liquid, whose extreme affinity for water is due
to the facility with which water molecules can link hydroxyl to-:
oxygen ions.
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! In intermediate cases the so-called amphoteric hydroxides of
such elements as aluminum, iron or silicon, neither free hydroxy-
nor negative oxy- ions are formed, but the whole structure-is
linked together by hydroxyl bonds only slightly stronger than

INOSILICATE CHAINS ' T
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BY COURTESY OF CORNELL UNIVERSITY PRESS, FROM BRAGG “ATOMIC STRUCTURE OF MINERALS"
FI1G. 110.—DIAGRAM OF A TYPICAL INOSILICATE, THE PYROXENE DIOPSIDE,
CAMGS10s.  siX SI0} CHAINS ARE SHOWN HELD TOGETHER BY THE CA2
AND MG?* JONS :
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those of water, length 2.7-2.8 X (see 117A, B), usually in the
form of gels whose great absorptive power is due to the presence
of attached hydroxyl groups.

Though the water molecule is by far the strongest dipolar neu-
tral molecule, other dipole molecules can also play the same role
in ionic crystals. Ammonia in particular can be strongly at-
tached to certain ions, such as silver or cobalt, forming complex
ions often stable in solution and having characteristic colours.
These are the co-ordination compounds of A. Werner, the study
of which by purely chemical methods gave rise to the idea of
spatial co-ordination, afterward elucidated by X-ray analysis.

Molecular Crystal Structures.—Crystals containing finite
molecules are legion: allowing for polymorphous forms, about
1,000,000 of them were already known by the 1950s. Of these,
accurate and complete crystal-structure determinations had been
made on about 200 and however much X-ray analysis might
flourish it was unlikely to keep up with the chemical discovery
and separation of new substances. Though enough was known to
understand the general principles of architecture of molecular
crystals, a systematic classification of the field, similar to that
of ionic and metallic crystals, was not yet possible. It was, how-
ever, also of relatively smaller interest both scientifically and
technically. Except for polymers, particularly fibres, the major
interest in molecular crystals is not in their physical properties
as crystals but in those of the molecules themselves as liberated
by melting, vaporization or solution, or transformed by chemical
reaction. The intramolecular structure is more important than
the intermolecular.

The value of X-ray analysis is therefore markedly different for,

molecular crystals as for other types. The major objective in
this field has been to determine the inner molecular structure
in more or less detail. Except in special cases the interest in
the way the molecules pack together is secondary and incidental.
Crystal analysis, mainly by X-rays, has been applied with suc-
cess on three levels of detail apart from its routine use for identi-
fication and molecular weight determination. The first is the
determination of molecules of unknown or disputed structures.
The classical case is that of penicillin where X-ray analysis
played an important part in determining the structure. This ap-
proach is likely to be more and more important in the biochem-
ical and particularly in the antibiotic field. The second level is
the determination of the stereochemical configuration of known
molecules of particular interest. Examples are to be found in
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the alkaloids with strychnine and in the steroids with calciferol
(vitamin D). The third level, requiring the most precise analy-

sis, is the accurate determination of bond lengths and angles and

electron distribution in molecules of particular interest as a
check and guide to the work of the quantum chemist, as for_in-
stance, in aromatic condensed ring systems such as naphthalene
and anthracene. |

Most of the results of crystal structure analysis are more ap-
propriately treated under chemical topics and only that relevant
to the building up of the crystals themselves is treated here. The
characteristic of molecular crystals is that they should contain
finite or at most one-dimensionally extended molecules held to-
gether internally by homopolar chemical valence forces. - The
molecules will in general be neutral, though it is convenient to
classify crystals containing charged molecules, or 'molecule ions
such as acetate or stearate ions, as molecular if the ions are not
of the oxyacid type already described. The forces between the
molecules will accordingly range from the ionic through the di-
polar (hydrogen bond) type to the extremely weak dispersion
forces due to mutually induced polarization. e

The distinction between the ultimate, and therefore the weak-
est, forces holding the molecules together is shown by the paral-
lelism of melting point, hardness and solubility. Where these
forces have an ionic or hydrogen bond character the crystals have
a relatively high melting point, are hard, and dissolve in“water.
Where they are dispersion forces the crystals have a relatively
low melting point, are soft, and dissolve in paraffins or ether. 4
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BY COURTESY OF CORNELL UNIVERSITY PRESS AND LINUS PAULING

FiG. 111.—DIAGRAM OF THREE TYPICAL PHYLLOSILICATES WITH THE PLATES
EDGEWAYS, THE FLAT PROJECTION OF THE PLATES IS SHOWN IN FIG. 105
(0)

In (A) Muscovite mica, KAI2(AlSis010) (OH)2, he double silicate layers are
held together by aluminium ions in octahedral co-ordination. The plates
themselves are held much more weakly by potassium ions, hence the ready
cleavage. In (B), china clay or kaolinite, Alz(Si205) (OH)4, there are only
single silicate layers associated with the aluminate layers. The plates are un-
charged and held together by hydroxyl bonds. 1In (C) montmorillonite or
bentonite, AlSi:05(0H), the sheets are similar to those of mica but uncharged

and even more weakly attached together; the space marked = = is filled with'

a variable amount of water or other absorbed substances

The nature of the forces is not the only factor determining
crystal properties; another is the size of the molecule. The larger
the molecule, as homologous series such as the paraffins (see
PARAFFIN HYDROCARBONS, CHEMISTRY OF) show, the higher the
melting point, the greater the hardness and the lower tl}e solu-
bility. But this does not affect the relative solubility in different
solvents, which depends on the nature of the bonds the solvent
has to break.” The shape of the molecule for a given size also
has an effect, but this is mainly on the melting point and ease pf
crystallization. Crooked and branched molecules, which are dif-
ficult to pack together, have low melting points and indeed may
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not readily crystallize at all, remaining oils at high temperatures
and glasses at low.

Where different kinds of forces coexist, as in organic alcohols,
acids, bases and salts, the nature of the crystal is affected by
the geometrical character of the linkage of the stronger forces.

FRAMEWORK SILICATES

SODALITE ORTHOCLASE FELDSPAR
A B
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BY COURTESY OF (A) THE CLARENDON PRESS, OXFORD, (B) CORNELL UNIVERSITY PRESS FROM
BRAGG “ATOMIC STRUCTURE OF MINERALS"
F1G. 112.—DIAGRAM OF TYPICAL TECTOSILICATES

(A) represents the zeolite sodalite made of linked alumino silicate four-membered
and six-membered rings. The large space in the centre may be filled by a variety
of atoms or ions. (B) represents the feldspar orthoclase, K(A1Siz)Qs. It con-
sists of four-membered alumina sificate rings, linked in the manner shown in Fig.
105 (P), the potassium ions occupy the interstices. Both structures should be
compared with those of the forms of silica in Fig. 113

If a molecule otherwise covered with CHz or CHj groups possesses
0

one carboxy- group— C{ , pairs of such groups tend to join

OH
together forming a double molecule as in acetic acid—

where the link between the molecules persists even in the vapour.
The double molecules of such neso-compounds behave in some
respects like those of single nonpolar
molecules. This is why the fats
(which are glycerol compounds of
fatty acids), the fatty acids them-
selves, and the soaps which are their
metal salts are physically similar and
near enough in properties to the par-
affins which lack carboxy- groups. If
there is more than one active group in
each molecule the result will be to

L

form rings, chains, layers or extended & W, V
networks by means of them in the P! //.,‘:.‘.
ways already described above. —

The primary classification of mo- i
lecular crystals can be based on the i
shape of the molecules which may be
divided into three rough groups—
round, flat and long. A further group DIFFERENT SPIRAL SYSTEMS
may be added for the extreme case of @ O
the very long molecules of polymers. 2 i
Inside each group a distinction of a
different kind may be made, according
to the nature of the weakest binding
force, into nonpolar and polar, usually
hydrogen-bonded, structures.

Structures with Isosteric (Round)

QUARTZ
A

O ATOMS BELONGING TO

are in linkage patterns.
around trigonal screw axes.

membered rings.
ring systems.

All types are built on the same general plan out of silicate tetrahedra sharing all four corners.
In (A), auartz, the tetrahedra formed paired helices or distorted six-membered ‘rings
(In order to demonstrate this, oxygen atoms belonging to different helices have
been distinguished in the drawing.)
(C) cristobalite only differ from (B) in the cubic rather than hexagonal arrangement of the
Both have a very much more open structure than quartz

LA
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Molecules.—As might be expected, crystals with molecules which
are not far from spherical give, when they are not markedly polar,
structures approximating to one or another of the forms of close
packing. When the molecule is slightly elongated, as in carbon di-
oxide, OCO (fig. 118A), 5 A long and 2.6 A wide, the long axes
are arranged to point in different directions. A somewhat less
symmetrical arrangement is found in benzene—

-~

H
c—C

AN
CH " K —
/ LR
C L
H

HC

/N _H

C—
H

(fig. 118B) which has a flattish molecule 5.8 X wide and 3.4 4
thick. Parallel arrangements are not met with, as minimum
space and energy conditions are provided by crossed arrange-
ments.

The simplest of polar molecules of this type is that of water
whose behaviour has already been described. Ice is the type for
all crystals held together throughout by hydroxyl bonds, as in the
poly-alcohols such as glycerine and in the enormous variety of
sugars. Slightly stronger hydrogen bonding is provided by or-

O

ganic acids containing the carboxy- radical —C { . The sim-
OH
plest type of these is oxalic acid— )
o OH
N, S
AN
HO 0

COOH.COOH. In the anhydrous state the molecules are held
together in a diamond-type network by hydrogen bonds. If
water is present a particularly simple sheet arrangement is
formed with the acid linking through the water molecules (see fig.
119A) such as in maleic acid (fig. 119B). In other cases the hy-
drogen bonds are internal.

Stronger bonds still are formed when the H-bond links a posi-

A TRIAD AXIS
)

TRIDYMITE CRISTOBALITE
B C

ol 23 458 gg OO

F16. 113.—CRYSTALLINE FORMS OF SILICA
The differences

In (B), tridymite, the silicate tetrahedra are linked in fully open six~
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tive amino- with a negative oxygen atom. The simplest case is
NH,

that of urea O=C<

NH,
-quasi-ionic structure (fig. 120A), but this is not the only possible
arrangement in which positive can be linked with negative poles.
One such structure is stabilized by interstitial hydrocarbons in
the way already described (fig. 120B).

A still stronger binding is provided where actual positive and
negative charges—zwitterions—exist on different parts of the
same molecule. The simplest case is that of glycine, the first
. of the amino acids and a major constituent of silk. In the crystal
the hydrogen of the carboxy group is transferred to the amino
group—

. By itself this forms a most compact

¢ H, (0] H,
. N\ A
. /C— C\ —_— /C—C\
HO NH: O l\iHs

?.nd these (fig. 121) link strongly with groups of the opposite sign
in adjacent molecules. Larger round molecules show more com-
plex varieties of close packing. Typical are the basketlike cross-
linked molecules of adamantine, camphor, strychnine and hex-
amethylenetetramine. Even where the molecule is highly ir-
regular, as in penicillin (fig. 122), the structure is approximately
close-packed.

Crystals with Flat Molecules.—These are for the most part
benzene derivatives or even condensed ring systems such as
naphthalene and anthracene. The common characteristic which
determines the aromatic nature of these molecules is that the
atoms all lie in one place. The simplest way of arranging such
molecules is by stacking them together like piles of plates as in
hexamethyl benzene (fig. 123). In most cases, however, the ar-
rangement of lowest energy is of a herring-bone or folded-pile
type, which provides (see fig. 124 and 123) a better fit at the
edges of the molecule. In either case the crystal tends to grow
flaster in the direction of the piles of molecules, and fine needle-
like crystals are characteristic of crystals with flat molecules.

216X
A B
Warer 6 1 2 3 4 5%
FROM J. D. BERNAL, BY COURTESY OF “JOURNAL OF CHEMICAL PHYSICS” {VOL. I, PP. 520, 528)

F16. 14—WATER

(A) shows a sgctllonal dlagram of a water molecule; the hydrogen nuclei are
seen to be well inside the. normal oxygen ion sphere. (B) shows the arrangement
of four such molecules in water or ice. Each molecule is surrounded by four

others linked to it by hydroxyl bonds, two pointi
e ke p ing toward and two away from

Among irpportant aromatic crystal structures are those of

‘ several carcinogenic hydrocarbons, such as methylcholanthrene
the nucleolides, purines and pyrimidenes, the porphyrins (WhiC};
are the basis of cell and blood pigments and of plant chlorophyll)
?.nd t.he related fast dye, phthalocyanine (fig. 7¢ and 125), that
is of interest as the first complex organic molecule whose detailed
structure was determined by crystal analytic methods above
without any chemical assumptions. - ’
If the molecules are also elongated in one direction in their
plane, as for instance in anthracene (fig. 126) or the steroid with

- OOX
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the common carbon skeleton ™\, the fastest lateral growth

A
A/
A

tends to be at right angles to this which leads to elongated
platy or lath-shaped crystals. In general, Fedorov’s rule is well

DODECAHEDRON
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&

BY COURTESY OF (A) THE PHYSICAL SOCIETY AND SIR LAWRENCE BRAGG, F.R.S.,
ACADEMY OF SCIENCES
Fi1G. 115.—FORMS OF CRYSTALLINE WATER

(A) The ice structure showing the positions of the oxygen atoms. Possible hydro-
gen positions are indicated by the diagrams. An infinite variety are possible, alf
satisfying the condition that two hydrogens and no more point to each oxygen
atom in the structure. (B) The structure of chlorine hydrate, 6Cl246H20. Each
point in the diagram represents a water molecule with four lines joining it tetra-
hedrally with other water molecules. The structure consists of tetrakaidecahedra,
figures with 2 hexagona! and 12 pentagonal sides, and dodecahedra with 12 penta-
gonal sides. Only the first are occupied by chlorine, argon or other neutral
molecules. A small diagram of ice on the same scale is shown at (C)

(B) NATIONAL

borne out by molecular crystals where the molecules are roughly
parallel. Crystals are, as it were, inverted images of the mole-
cules that build them up, long where these are short, short where
they are long.

Molecular Compounds—Because of the peculiar unsaturated
nature of aromatic compounds (see CHEMISTRY: Organic Chemis-
try, Classifications of Organic Compounds), the dispersion forces
they exert are both particularly strong and are directed in relation
to the symmetry plane of the molecule. In some cases they are so
strong as to attach different molecules together even in solution.
In crystallizing, the different molecules usually pack in parallel and
alternating. An example of these is the paraiodoaniline
s-trinitrobenzene compound (fig. 127). Molecular compounds are
analogous to the order-disorder compounds found in alloys. They
are essentially of geometrical rather than chemical nature. The
dimensions of two different molecules may be so adjusted to each
other as to fill space better together than either does separately.

A striking example of this is provided by clathrate crystals which
are particularly evident among aromatic compounds. This is espe-
cially the case where polar groups are present, for there, owing to
the extended and rigid character of many aromatic molecules,
framework structures with considerable vacant space can be
formed. Quinol (see fig. 128) is one of the best known of this
type. In its crystals two independent hydrogen-bonded frame-
works are formed capable of accommodating other molecules rang-
ing from the atoms of the rare gases to sulphur dioxide. Another
aromatic clathrate compound is that of the asymmetrical type al-
ready discussed.

Crystals with Elongated Molecules—Where one dimension of a
molecule is more than about three times its other dimensions, as
for instance in all long-chain hydrocarbon derivatives or, in gen-
eral, fatty substances, the only stable form of packing is with the
long axes parallel. The arrangement at right angles to this one
approximates to two-dimensional hexagonal close-packing. The
packed molecules form an extended sheet like corn in a field, but
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they need not be at right angles to the sheets. Indeed, only mole-
cules with nonpolar ends, such as the paraffins, pack this way.
Usually the oblique linking of two active groups—hydroxy-,
carboxy-, amino- —determines a considerable slope which may be
as much as 45°. In crystals the sheets tend to pile in layers to
form thin platy crystals, usually of hexagonal or diamond shape.
Where both end groups are nonpolar, the layers are held together
by dispersion forces and readily slide over each other accounting
for the soft and plastic nature of long-chain fatty compounds.
for the soft and plastic nature
of long-chain fatty compounds.
Where one end group is polar, as
in the fatty acids and soaps, the
molecules tend to stick together
in pairs, forming double layers
between which the weaker disper-
sion forces operate. ¢

The sheet structure is particu-
larly stable, it persists in the
liquid state in the so-called smec-
tic (fatty) liquid crystals. Where
the sheets are double they can
accommodate polar liquid (like
water), solids and salts between
the polar faces of the molecules
and nonpolar liquids and solids (oils and fats) between the non-
polar faces. This ability to act as an intermediate emulsifying
layer between oils and water is the basis of the detergent proper-
ties of soaps.

Polymer Crystals—The polymers are a most distinct and im-
portant group of molecules. Occurring in all natural fibres, they
have been used by man for centuries, and by the mid-1950s the
natural products were being supplemented at an increasing rate by
new synthetic polymers. The simplest of these are the linear poly-
mers which are multiple repeats of the same small-monomer mole-
cule or residue joined together throughout by homopolar forces.
More complicated are linear copolymers where two or more differ-
ent monomers are linked together regularly or irregularly.

Regular linear polymers can, in general, pack together to form
fibrous ino-type crystals. This parallel packing may occur, as it
does in nature, in the process of polymerization, that is, new
monomers are added one by one to several parallel chains, or it
may be brought about by stretching, as in rubber or the drawing
of nylon. As in the case of most polymers the chains are all of
different lengths; layers, such as those of the pure paraffins, are not
formed and the crystallization is limited to two dimensions.

The forces between the chains depend on the types of side
groups. If these are nonpolar, such as the methyl and methylene
groups of isoprene that form rubber, the chains are very loosely
held and the polymer can melt. If the forces are of the hydrogen
bond type, as in polysugars such as cellulose, the polymer cannot
melt but chars on heating. Homopolar bonds can also be formed
between chains. The number of these crosslinks determines the
character of the polymer. When these are formed only between a
small proportion of the residues the effect is simply to stiffen the
structure and prevent viscous yield. This is the reason for the
improvement of rubber by adding -S-S- cross links in vulcanization
by means of sulphur. Analogous is the formation of wood from
cellulose by the presence of the polyphenol binder lignin and of
leather from skin by polyphenol tannins. If the number of cross
links is great, hard and brittle products such as vulcanite are
formed.

When cross links are not present smaller molecules can be in-
serted between the polymer molecules without destroying the regu-
lar arrangement of the chain. This is the phenomenon of swelling.
Living muscle contains fibre molecules regularly packed but sepa-
rated by four times their weight of water carrying salts and bio-
chemically active small molecules in solution. At higher dilutions
fibrous molecules can go into solution as single molecules or bun-
dles (tactoids). If these are aggregated by cooling or chemical
action, gels are formed such as the collagenous gels of gelatine
which may contain only a small percentage of solid matter which
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X-ray analysis proved to be of great value in the study of poly-
mers. With fibrous polymers an X-ray photograph shows the de-
gree of parallism of the molecules. Where they are approximately
parallel the diagram usually shows: (1) in a direction at right
angles to the fibre (eguator) the distances apart of the molecules
in the fibre and the effect on this of swelling agents; (2) by the
spacing of the lines parallel to the equator (layer lines) the repeat
period of the residues along the fibre; (3) in the direction of
the fibre (meridian) any longer periodicities in the fibre itself. For
example, in the keratin (horn) of a porcupine quill the major
cross-spacing is 11 A, the residue period is 5.2 A and there is a
long-range repeat of the pattern every s41 A.

Many fibre molecules can exist in more than one form, either
fully extended or more or less folded or coiled. Rubber is typical
of a class of polymers in which the normal state is one of irregular
coiling (fig. 131) giving an X-ray picture like that of a liquid
which changes to a more or less fully extended molecule on stretch-
ing, giving a typical X-ray fibre diagram. The tendency to revert
to an irregular shorter form is the explanation of the long-range
elasticity of rubber. It is favoured by heat—the contraction of
rubber being analogous to the expansion of a gas.

Carbohydrate polymers, because of their many hydrogen cross-
bonds, have not the same possibility of changing their state. Cel-
lulose, the basis of linen, cotton, wood and paper, has fully ex-
tended molecules and the fibres it forms have limited elasticity.
In starch the sugar residues are rigidly coiled and indeed are nat-
ural clathrate compounds as is shown by the blue colour of iodine
when it is absorbed in the holes of the structure. ‘
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BY COURTESY OF THE CLARENDON PRESS, OXFORD

FiG6. 117.—HYDPROXIDE STRUCTURES

(A) Mg(OH)z, brucite, and (B) AI(OH):, hydrargillite, are both composed of
close-packed layers of hydroxyls. The difference is that in (B) one metal posi-
tion in three is missing as shown in the plan and hydroxyl groups in adjacent
layers are vertically above each other in (B) rather than stacked as in (A) as
a result of more strongly directional hydroxyl bonding. This is shown in the
section. (C) is the radically difierent structure of boric acid, B(OH)s. Here

the co-ordination around the metal atom is iriangular and all the hydroxyl bonds -

lie in a plane. The layers are held together loosely by dispersion forces

Proteins.—The proteins, the polymers of amino acids, are the
most various as well as the most important of polymers physically,
chemically and biologically. A fibrous protein, the myosin of
muscle, is responsible for all animal movement. Tougher fibrous
proteins give supporting and defensive structure which man has
made use of for his own purposes, collagen for skin and leather,
fibroin in silk, keratin in hair, wool and horn. The nonfibrous,
soluble and crystallizable proteins, the albumens and globulins, are
the major constituents of cells of animals and plants alike. As
chemical agents or enzymes they are responsible for the cycles of
chemical interactions that maintain the metabolism which is the
essence of life.

The fibrous proteins seem to belong to two great classes, the -
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rigid proteins of the collagen type whose structure was still not
elucidated in the 1950s, and the contractile proteins of the myosin-
keratin type whose molecules can, in general, exist in an extended
form and in a folded or a coiled form. Silk fibroin is the only
one that is found naturally with extended molecules similar to

CARBON DIOXIDE
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Fi16. 118.—SIMPLE MOLECULAR CRYSTALS

‘The structures, which are both modifications of cubic close packing, oceur from
the action of nondirectional dispersion forces between nonpolar molecules. In

. (A), carbon dioxide, the molecules lie along a set of nonintersecting triad axes
similar to that existing in iron pyrites, Fig. 91A. In (B), benzene, the planes
of the molecules lie parallel to the longest axes but are alternately turned to
make a herringbone pattern in the plane perpendicular to it

those found in synthetic dipeptides (fig. 132). The keratin mole-
cules of hair and wool are normally coiled and held in position by
-S-S- cross links. By weakening these through steaming or chemi-
cal solution the extended form can be produced by stretching,
, aprocess made use of in permanent waving (ig-233). The myosin

! “of musele is always found in the coiled form but not in a fixed con-

-

figuration, and the variation in its amount corresponds to the con-,
. traction and relaxation of muscle.

The precise configuration of

he fold or coil of the polypeptide chain is still much in dispute.
An attractive solution, arrived at from stereochemical considera-
tions, is that of Pauling. This is a tightly coiled spiral with 3.7
amino-acid residues per turn of length 5 A or a 1.5 A step between
successive residues along the chain. -

Once soluble proteins, and particularly enzymes, could be puri-
fied it was found possible to crystallize them and several of these
crystals have been studied by X-ray methods. This has yielded
much information about the general size and shape of protein mole-
cules (fig. 134) but as yet little more than hints as to their in-
ternal constitution. This is not surprising, if it is borne in mind
that the smallest protein molecule contains more than 1,000 atoms
and that these must be arranged in a highly unsymmetrical way.
The problem of protein structure, on account both of its intrinsic

importance and of its difficulty, remains the goal of crystal analy-

sis. It will probably require a combined attack of chemists, crys-
tallographers and biologists to solve it.

What is known is that protein molecules of any relatively pure
protein, such as insulin, haemoglobin, lysozyme or ribonuclease, are
definite, aimost identical, objects roughly ellipsoidal in shape, and
of dimensions ranging from 20 to 60 A. In the wet crystal, and
presumably in solution, they are surrounded by a layer of water of
about a third their weight, and more water, which may contain
salts, is usually also found between the molecules in the crystal.
Internally the general opinioh is that the molecules contain several
it el at a distdnee of abeut 10 A.
ins found'by chemical methods
crystallographically it is suppased
' 3 2% may he'bent bagkward and ferward
fseveral times to form several crystallographic chains. Heat might

be expeécted to break up this arrangement and join the chains hap-
hazardly. This would account for the phenomenon of protein
denaturation, the general hardening and insolubility produced by
boiling solutions of soluble proteins, as for instance, in white of

egg.
&%tauine Viruses.—The normal proteins are not the largest
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molecules that have been found to crystallize. Still larger are the
nucleoproteins constituting a number of plant viruses such as those
of tobacco mosaic, tomato bushy stunt and turnip yellow.” A nu-
cleoprotein is a relatively loose compound of protein and nucleic
acid, itself a composite of phosphates, sugars and purine or pyrimi-
dine derivatives. o

The units or organisms that make up virus crystals are large
enough—of the order of 100 to 400 A~~to be seen in the electron
microscope, and the appearance of a virus crystal at a magnifica-
tion of about 30,000 is a striking confirmation of pictures of crystal
structure arrived at indirectly by X-ray diffraction or indeed of the
logical guesses of Hooke, Huygens and Newton who spoke of crys-
tals containing molecules arranged in “rank and file.” The regu-
larity of plant virus crystals goes, however, further than their
merely regular packing. The X-rays, with their higher resolving
power than the electron microscope, show that they have internal
regularity and quasi identity down to atomic dimensions.

At this point, on the very limit of knowledge at mid-zoth cen-
tury, the subject of the structure of crystals may be left. New
methods, such as s¥meutron diffraction and new refinements,
particularly in the use of computing machines, were rapidly driving
those limits back,d What had already been done, however, in the
years since Laue’s discovery of 1912 had already transformed al-
most out of recognition the knowledge of solids and liquids. In
this respect it is as if science had acquired a microscope capable
of magnifying 10,000,000-fold, capable of seeing atoms distinctly.
As a result science was beginning to find explanations in terms of

atoms and their combinations not only of the phenomena of.

physics and chemistry but of the behaviour of ordinary things.
The beating out of metal under the hammer, the brittleness of glass
and the cleavage of mica, the plasticity of clay, the lightness of
ice, the greasiness of oil, the elasticity of rubber, the contraction of
muscle, the waving of hair, and the hardening of a boiled egg are
among the hundreds of phenomena that had already been com-
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FIG. 119.—ORGANIC ACIDS

(A) Oxalic acid dihydrate, Fourier projection of single mofecule showing Its posi-

tion in the cell. The molecule is bound in a ptane to others through water mole-
cules. The probable position of the hydrogen atom responsible for the strongest
hydrogen bond is shown. (B) Maleic acid, Fourier projection and bond diagram
shewing internal hydrogen bond reduced to a very small value 2.4 A by the strain
of the rigid and plane molecule

pletely or partially explained. They were an earnest of the mil-
lions of others, old and new, that still had to be explained.
(J. D. Be.)

PHYSICAL PROPERTIES OF CRYSTALS

The great bulk of solid matter is crystalline, and therefore the
properties of crystals are to a large extent also the properties of
ordinary solid materials. The differences between the properties
of single crystals and those of ordinary solid matter are due to the
polycrystalline or partially crystalline character of ordinary solids.
Thus the study of crystals is the study of solid matter in its sim-
plest form. The properties considered here are those of thermal
expansion, thermal and electrical conductivity, magnetic and di-
electric induction, piezoelectricity and pyroelectricity, elasticity,
optical properties, plasticity, cleavage and rectification. A special
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section is devoted to a more detailed treatment of the optical
properties. .
Applications of Special Properties of Crystals.—The physi-
cal properties of crystals find many applications in other sciences
and in industry. Some crystals, of which mica is the best example,
possess the property of cleaving into thin layers. As it occurs in
the rocks, a crystal of mica may be a foot across and an inch or
so thick. On pressing a sharp point, or a sharp blade, into the side
of such a crystal it cleaves in two. This cleavage may be repeated
many times until layers as thin as ygg in. are obtained. With
some difficulty even thinner layers can be obtained. Such thin
layers of mica are used in making condensers for radio apparatus,
and for the windows of slcwv-combustion stoves. Certain crystals
are valued for their resistance to fracture. Diamond is the hardest
substance known and, because of its resistance to wear, it is used
in rock-drills, precision lathe-turning and wire drawing as well as
for a gem stone. Synthetic corundum, which when coloured red
forms artificial ruby, is alsc used for watch bearings because of its
hardness. Other crystals are very soft; e.g., talc owes its use as a
cosmetic to this property and its white colour. Crystals of calcite
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FiG. 120.—FORMS OF CRYSTALLINE UREA

The urea molecule 0—=CNH: is shown diagrammatically in (A).
NH:2

action of the positively polarized NHz groups and the negative O atom overlap that
of the central carbon atom and are entirely responsible for the coherence of the
molecules in the crystal. In (B) is shown the tetragonal form of the crystal of
pure urea held together very compactly by the attractions between the peositive
and negative parts of the molecule. In (C) (on a slightly larger scale) is shown
the hexagonal form of urea stabilized by the presence of a straight chain hydro-
carbon—shown at the centre of the diagram. The molecules are held together
as in the other case by electrostatic forces

The spheres of

are employed in producing polarized light. The science of petrol-
ogy is largely based on the study of the appearance of thin sections
of rocks in a microscope, fitted with two polarizing calcite prisms.
In many instruments polarized light is produced by polaroid, a cel-
lulose or other transparent base in which pleochroic crystals have
been dispersed. These crystals have the property of absorbing po-
larized light vibrating in one direction and transmitting light vi-
brating in a perpendicular direction. Provided the crystals are
spread on the base all parallel to one another they produce plane
polarized light.

Another substance of great practical importance is quartz. All
its physical properties are important, but its piezoelectricity is
probably of the greatest practical application. Suitably shaped
pieces of quartz can be made to vibrate under the influence of an_
alternating electric field and, conversely, when they vibrate they
generate electric charges. This action and reaction between the
applied electric field and the crystal makes it possible for the crys-
tal to control the frequency of alternation of the electric field. So
accurate is this control that when applied to clocks it results in
timekeepers which do not gain or lose more than one second a year.
In broadcasting and in all extensive telephone systems there is a
need for accurate control of frequency and this usually depends on
the properties of small bars of quartz. Single crystals of metals
play an important part in industrial processes. Transformers and
permanent magnets depend for their efficiency on the size and
orientation of the iron crystals they contain.

828E

Lastly, mention must be made of the properties of rectification
shown by many semimetallic crystals. When used with appropri-
ate contacts, crystals of copper oxide, selenium, silicon and ger-
' manium are capable of conduct-
ing electricity in one direction
much better than in the opposite
direction. This property is used
in electrical engineering to pro-
duce direct current from alter-
nating current and in radio recep-
tion to make audible the rapid
variations of the alternating cur-
rent in the receiving aerial.

Dependence of Physical
Properties on the Perfection
of the Crystal.——A number of
the physical properties of crystals
are practically the same even
when the crystal is not quite per-
fect. Such properties are called
structure insensitive and include,
among others, thermal conduc-
tivity, diamagnetic susceptibility,
piezo-electricity and elasticity. Other properties are dependent on
the perfection of the crystal and these are known as structure sen-
sitive. Perhaps the most important of these is plasticity which is
connected with the processes of crystal growth. The variation of
the physical properties with direction is subject to similar laws in
the structure-sensitive as in the structure-insensitive group. It is
much easier to measure the properties which are structure insensi-
tive because they are reproducible from one specimen to another
and the laws governing the variation with direction have been
worked out in connection with structure insensitive properties.

Representation Surfaces.—It is convenient to represent the
variation of a given physical property of a crystal with direction
by means of a geometrical surface. These surfaces are known as
representation surfaces and are directly related to the symmetry
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FI1G. 121.—GLYCINE

Arrangement of molecules in b planes
showing the effect of zwitter ion bind-
ing between the COO— radical on one
amino acid molecule and the NHZ radi-
cal of two others. "The layers thus
formed are held together much less
strongly by residual polar forces

FOURIER PROJECTION ON b PLANE
1 0 1 2 3 4 7.3

BY COURTESY OF PRINCETON UNIVERSITY PRESS, FROM “THE CHEMISTRY OF PENICILLIN®

Fi1G. 122.—RUBIDIUM BENZYL PENICILLIN
Simplified Fourier projection from which the chemical structure was deduced,-
Note the four-membered oxazolone ring, a most unexpected feature. The rubidium
jons are co-ordinated to carboxy and hetonic oxygen groups

of the crystal. Properties representable by an ellipsoid inclu@e
thermal and electrical conduction, thermal expansion, magnetic
and electric susceptibility and certain optical properties; e.g.,
refractive index. The ellipsoid is triaxial in the orthorhombic,
monoclinic and triclinic systems; it is an ellipsoid of revolution
in the tetragonal, thombohedral and hexagonal systems; and in 'the
cubic system it degenerates into a sphere. The representation
surfaces for piezoelectricity may have cigar-shaped lobes or con-
sist of more or less ellipsoidal figures placed asymmetrically with
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respect to the origin, Surfaces representing elasticity are like
crystals of the same symmetry with rounded corners and dimpled
faces.

The number of coefficients required to define the property of a
crystal depends on the nature of the representation surface. Thus
a sphere has only one constant, namely, the radius; an ellipsoid
of revolution has two constants corresponding to its major and
minor axes; a triaxial ellipsoid has three constants corresponding
to the lengths of its principal axes. The constants defining piezo-
electric and elastic properties are more numerous than those de-

BY COURTESY OF (A) PROF. J. M. ROBERTSON AND “JOURNAL OF THE CHEMICAL SOCIETY?

F1G. 123.~—HEXAMETHYLBENZENE

(A) Fourler projection nearly in plane of molecutes. (B) Diagram of stacking
of molecules in their own plane. The parallel arrangement contrasts with those
of Fig. 124 and 125

lf;ming an ellipsoid except when the symmetry of the crystal is very
igh.

Measurement of Structure-Insensitive Properties.—Most
measurements of the physical properties of crystals are usually
made difficult by the smallness of the specimens. A few natural
and synthetic crystals can be grown in large blocks but the great
bulk of crystals do not exceed a few millimetres in linear dimen-
sions. For optical work this is already a large size and it is there-
fore not surprising that the optical properties of crystals are most
extensively studied. By X-ray methods it is also possible to study
the thermal expansion of small crystals. For thermal and electrical
conduction, for magnetic and dielectric induction, for piezoelec-
tricity, elasticity and other properties larger crystals than can usu-
ally be obtained are required and hence there is a great paucity of
physical data about most crystalline substances. The apparatus
used is usually the same as that employed for ordinary solids ex-
cept that changes are made to take account of the variation of the
physical property with direction and also, as far as possible, the
small size of the crystal.

Thermal conductivity is measured in apparatus which is a vari-
ant of Forbes’ bar; i.e., heat flows along a composite bar consisting
of a plate of crystal sandw.ched between two metallic plates. The
temperature gradient in the crystal is measured and compared with
that in the metal plates. The temperature gradients in the crystal
and in the metal are inversely proportional to their thermal con-
ductivities.

Electrical conductivity can be measured on single crystal wires
by standard methods. It is necessary to grow “current” and “po-

CRYSTALLOGRAPHY

tentials” leads which are all part of the same single crystal.
Magnetic induction is measured by suspending the crystal in a
strong magnetic field (of the order of 1,000 oersted or more) and
measuring the mechanical influence of the field on the crystal.
There are two types of measurement: one carried out in a uniform
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F1G. 124.—NAPHTHALENE

(A) Three-dimensional Fourier section through plane of molecule. Note regular-
ity of the distribution of intensity and the lowest contour line showing the posi-
tions of the hydrogen atoms. (B) Diagram of molecular packing showing herring
bone arrangement. One set of molecules is seen almost edge on

LRI

magnetic field and the other in a nonuniform field. In the uniform
field a crystal, suspended on a thin fibre of phosphor-bronze or
fused silica, tends to set with the direction of its greatest paramag-
netic susceptibility along the lines of force, or, if it is diamagnetic,
with the direction of least diamagnetic susceptibility parallel to
the field. If the crystal is twisted away from this position it tends
to return under the influence of the field and the magnitude of this
torque is measured. This provides information on the difference
between the maximum and minimum susceptibilities perpendicular
to the length of the fibre. By mounting the crystal in various
ways on the fibre the differences between the three principal sus-
ceptibilities can be found. In a nonuniform field the crystal is sub-
jected to a translational force. This force can be measured by
the displacement of the crystal and is a measure of the suscepti-
bility in the direction of the magnetic field. By mounting the
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F1G. 125.—PHTHALOCYANINE

The diagram shows the molecular arrangement. (See Fig. 78.) The stippted
atoms belong to molecules whose centres are in the plane of the paper. They are
inclined about an axis in the plane of the paper with the lower rings upward and
so overlap. The centre of the molecule with the open circle atoms lies half way
down the cell. It is inclined about another axis and interieaves with the other
molecules forming a very compact structure

crystal in two or three orientations relative to the direction of
the field the principal susceptibilities may be found individually.

Ferromagnetism is the strongly developed magnetic property
shown by crystals of lodestone, iron, nickel and various metallic
oxides and alloys. The degree of magnetization shown by such
materials is many million times greater than that shown by most
other substances. This is explained by the mutual effect of neigh-
bouring atoms on one another. Each atom behaves like a very
weak bar magnet and under the influence of an external field these
magnets tend to set parallel to one another. The external mag-
netic field is in part supplied by the surrounding atoms, and cer-
tain small regions called domains become spontaneously magne--
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tized due to the mutual effects of the atoms within any one domain.
In contrast with ferromagnetic crystals, a class of antiferromag-
netic crystals was found in which the mutual effect of neighbour-
ing atoms is always to set the atomic magnets in oppositely di-
rected groups. An example of such a crystal is a mixed oxide of
zinc and iron, ZnO.Fe;0;. When this substance is placed in a
magnetic field there is no possibility of causing all the atomic mag-

PROJECTION SHOWING RING ARRANGEMENT

PROJECTION SHOWING STEREOCHEMISTRY OF RINGS
B

23 &

& 3

F1G. 126 —CHOLESTERYL lODIDE

Scale dlagram based on X-ray analysis showing the stereochemistry of the sterof
ring system. The methyl groups projecting from the general plane of the mole-
cule should be noted '

nets to act co-operatively because they are locked firmly together,

equal numbers being orientated in opposite directions.
Dielectric properties of crystals are usually measured in stand-

ard bridge or heterodyne circuits. The capacitors are made small

because the capacity of a condenser containing a crystal of the.

dimensions usually obtainable is also small. A class of ferroelec-
tric crystals was discovered in which the dielectric constant may
reach values many thousand times greater than those found in
normal dielectrics. These crystals are like ferromagnetic materials
in that electric dipoles associated with neighbouring atoms tend
to set parallel to one another. This leads to spontaneous polariza-
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BY COURTESY OF H. M. POWELL, F.R.S., AND 4JOURNAL OF THE CHEMICAL SOCIETY”

(LONDON)
FIG. 127 —MOLECULAR COMPOUND OF PARAIODOANILENE AND S-TRINJTRO-
BENZENE

The molesules shown foreshortened are almost parallel; the distances between
their planes are indicated

tion of domains and to a large polarization in an applied electric
field. A well-known example of this class of crystal is Rochelle
salt, NaKC4H,04.2H,0. The dielectric constant varies greatly
with the frequency of the applied field, and special attention must
be given to the temperature, pressure and strength of the electric
field in measuring the dielectric constant.

Piezoelectric properties may be studied either by measuring the
electric charge developed on a crystal when it is bent or twisted
or by studying the electrical characteristics of an oscillatory circuit
in which the crystal is placed. In crystals of low symmetry it may
be necessary to cut a large number of plates and bars and to
study each one separately in order to obtain the magnitudes of
the various piezoelectric constants.

Pyroelectricity is the property of certain crystals of developing

828G

electric charges on heating or cooling. It is well shown by tour-
maline and the electric charges can be revealed by placing the
crystal in an atmosphere of white smoke obtained by burning
magnesium ribbon (fig. ).

Elastic properties of crystals may be measured by two distinct
methods. The first and older method depends on bending or
twisting plates or bars and measuring the deformation as well as
the applied forces. The second method depends on setting the
crystal into vibration and finding the frequency of vibration and
the wave length of the corresponding elastic wave. From these
data the velocity of sound associated with this particular type of
vibration can be calculated and, from that, one or more elastic
constants. A variant of this method depends on the scattering of
light or of X-rays from waves travelling in the crystal. A light
beam is passed through a small polished cube of the crystal which
is excited into rapid vibration by a piezoelectric oscillator under-
neath it. The alternating regions of compressed and extended
material in the crystal act in the light as a diffraction grating,
A complex diffraction pattern (fig. ) is produced around the in-
cident light beam and an analysis of this leads to values for the
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F1G. 128.—CLATHRATE COMPLEX OF QUINOL MOLECULES

(A) Perspective drawing showing three-dimensional cage work of auino! mole-
cules. The hexagons denote the hydrogen bonding between the molecules, each
auinol molecule being shown schematically as a line. (B) Schematic representa-
tion of the enclosure of a molecule between two cage systems.. -Each point of
the cage now replaces the hexagon of hydrogen bonds as see in (A). The crystal-
line clathrate compound is the complete interpretation of two cage systems

elastic constants. If X-rays are used instead of visible light the
elastic waves are not produced by any external agency, such as a
piezoelectric oscillator, but arise from the vibrations of the atoms
in the crystal. The higher the temperature, the greater the ampli-
tude of these vibrations and the stronger the reflection of the
X-rays they produce. From the direction of these diffusely re-
flected X-rays the wave length of these elastic waves is determined,
and from the intensity of the X-rays the frequency of the elastic
waves is found. Combining these data the velocity is again found
and from that the elastic constants.

Optical properties of a crystal are completely defined by the
three principal refractive indices (which may be reduced to two
or only one according to the symmetry) and by the variation of
these indices with wave length. The methods of measurement
are adapted from those methods used in connection with isotropic
materials such as glass. The essential requirement is, in general,
that the vibration direction of the polarized light passing through.
the crystal shall have some known relation to the external shape
of the crystal. To each direction of vibration there corresponds
a characteristic refractive index. Prisms cut in various ways
usually give rise to two refracted beams and the corresponding
indices can be found from the minimum deviation. Total reflec-
tion of the light from the crystal when immersed in a liquid of high
refractive index is also used to find accurate values of the indices.
Various refractometers have been devised for this purpose and
some can be used on the stage of a microscope for the study of
very small specimens. A great wealth of optical phenomena
is shown by doubly refracting crystals viewed between crossed
nicols; s.e., in polarized light (fig. ). For instance, a wedge-
shaped piece of crystal shows a series of colours corresponding
closely to those obtained with Newton’s rings. The cause of this.
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association of a particular colour with a particular thickness of
crystal is a result of double refraction, because of which certajn
colours additively interfere and others destructively interfere,
leaving a coloured residuum. Between parallel nicols the comple-
mentary colours are observed. Some beautiful optical effects can
be obtaired in convergent light (fig. ). When a crystalline plate
cut perpendicular to an optic axis is viewed by means of a minify-
ing telescope between crossed nicols, coloured circles or rings of
more complicated form are observed. These are dependent prin-
cipally on the variation of the double refraction with direction
and can be used in finding important optical properties such as the
differences between the principal refractive indices.

Rotatory polarization is a property possessed by certain crystals
of rotating the plane of vibration of polarized light through an
angle depending on the thickness traversed. Cubic crystals such
as sodium chlorate, NaClO;, show the effect in all directions, but
in crystals such as quartz or cane sugar the effect is masked
by the double refraction except along the optic axes,

Structure-Sensitive Properties.—Some individual crystals
are perfect by all the tests which can be applied to them; all but
these rare examples are imperfect. The exact way in which the
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, Fi6. 129.—CRYSTAL STRUCTURES OF LONG CHAIN COMPOUNDS

(A) and (B) are of a straight c!ain paraffin, CaoHoo. In (A) a single cell is
shown. The double layer contains molecules in a pseudohexagonal arrangement
hexagonally close packed at the ends like the two layers of cells in a honeycomb.
(B) shows an enlarged Fourier projection obtained by single crystal electronic
diffraction, indicating clearly the positions of the staggered carbon atoms and
the hydrogen atoms, very difficult to find by X-ray methods. (C) shows a Fourier
projection of isopalmitic acid

atoms are arranged in the unit cell, the smallest repeating portion
of the crystal, can be accurately determined but it is much more
difficult to find the degree of imperfection in the stacking of these
unit cells. An actual crystal may be likened to a large pile of
regularly stacked bricks; each brick represents a unit cell and
the whole pile represents the crystal. The imperfections of the
crystal could be represented either by holes or by pieces of stone
of irregular shape embedded in the pile. The interruptions of the
regular rows of bricks by holes or stones correspond to some of

CRYSTALLOGRAPHY

the defects which become incorporated in the crystal during
growth. The growth of a crystal occurs in different ways accord-
ing to its nature and the circumstances of its growth, but in many
cases layer after layer is laid down in a regular way. If the
growth rate exceeds a certain speed foreign atoms may be caught
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F16. 130.—TACTOIDS AND GELS

(A) Diagram of the formation of tactoids in sols of tobacco mosaic virus preparas
tions. The arrangements of the elongated virus particles in the spindle-shaped
tactoids is indicated not to scale. In this condition the tactoids orient themselves
parallel to the walls of the tube and free flow is possible. (B) On disturbing the
preparation the tactoids jam together and form a gellike network whose internal
constitution is similar to that of the tactoids but which is so connected as to block
all movement

between successive layers, or atoms may be missed out of the
places they should occupy. The nucleus from which the crystal
starts to grow probably influences the whole of the succeeding
growth and errors in stacking become perpetuated right through
the crystal.

Plasticity —A crystal is said to possess plasticity when under
mechanical stress certain parts of the crystal can move over other
parts, according to definite laws, in such a way as to relieve the
stress. This is connected with the imperfections referred to above
which concentrate the stress in localized regions around them-
selves. Although calcite, rock salt, quartz and many other well-
known crystals show plasticity the phenomenon is most clearly
revealed by single crystals of metals. If, for instance, a single
crystal of zinc in the form of a wire is stretched, then the wire
extends to twice, or more than twice, its original length before
breaking. During the stretching the shape of its cross section
changes from circular to elliptical. The gliding of one part of
the crystal relative to the neighbouring parts occurs on glide planes
and in one or more glide directions. The crystal behaves like a
pack of playing cards in which there is a thick viscous fluid be-
tween successive cards. The phenomenon is coupled with work
hardening; i.e., those parts of the crystal which have been sub-
jected to deformation show a greater resistance to further de-
formation than parts not already deformed. This phenomenon
is also connected with the imperfections in the atomic stacking.
Each imperfection concentrates a part of the stress applied to the
whole crystal around itself and when the number of these imper-
fections is greatly increased by the plastic flow, the whole applied
stress can be resisted by the localized effects of the imperfections.

It is easy to see how great is the importance of work hardening
taken in conjunction with plasticity, for not only do metals yield
at the place where the stress is greatest but also resist further
deformation at that point until some other part has also experi-
enced deformation.

Plasticitv is sometimes associated with elide-twinnine a nrocess
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FIG. 131.—RUBBER MOLECULES

(A) shows a possible arrangement of polyisoprene rubber in the normal crystalline form. (B) and (C) show diagrammatically how the. chance coiling of _the
chain of isoprene units such as occurs in unstretched rubber leads to a marked shortening compared with that found in the fully extended chain formed by stretching

in which there is a sudden switching of the atoms to a second
stable position related in a definite geometrical way to the first.
This occurs toward the end of the range of plastic deformation
and gives rise to a characteristic crackling noise similar to the
cry of crumpled tin foil.

Cleavage is shown by many types of crystals when struck with
a sharp knife held parallel to a certain plane in the crystal. Thus
rock salt splits parallel to the face of the natural cube, calcite
parallel to the face of a rhombohedron and mica parallel to the
basal plane. The correlation between cleavage and the atomic
structure is close; wherever the atoms are more firmly bound to-
gether in one direction (or directions) the cleavage tends to occur
so that the plane of cleavage does not intersect any of the strongly
bound lines of atoms. Thus layer structures tend to cleave paral-
lel to the layers, chain structures parallel to the chains, and scaf-
fold structures tend to have no cleavage at all except when the
structure is very simple. .

Rectification is the phenomenon shown by certain semicon-
ducting crystals in which electric current flows more readily in one
direction than in the opposite direction. This phenomenon could
never occur in a homogeneous material and is in fact always asso-
ciated with a boundary layer of different chemical or physical
properties from the main crystal. The asymmetry of the electrical
property is due to a difference of electronic character at points on
a line passing through the boundary layer. (W.A. W)

OPTICAL PROPERTIES

The complex optical characters of crystals are not only of con-
siderable interest theoretically, but are of the greatest practical
importance. In the absence of external crystalline form, as with
a faceted gem stone, or with the minerals constituting a rock (thin,
transparent sections of which are examined in the polarizing micro-
scope), the mineral species may often be readily identified by the
determination of some of the optical characters.

According to their action on transmitted plane-polarized light
(see LicHT: Polarization And Electromagnetic Theory) all
crystals may be referred to one or another of the five groups
enumerated below. These groups correspond with the six systems
of crystallization (in the second group two systems being included
together). The several symmetry classes of each system are opti-
cally the same, except in the rare cases of substances which are
circularly polarizing.

1. Optically isotropic crystals—corresponding with the cubic
system.

2. Optically uniaxial crystals—corresponding with the tetrag-
onal and hexagonal systems.

3. Optically biaxial crystals in which the three principal opti-
cal directions coincide with the three crystallographic axes—cor-
responding with the orthorhombic system.

4. Optically biaxial crystals in
which only one of the three prin-
cipal optical directions coincides
with a crystallographic axis—cor-.
responding with the monoclinic
system.

5. Optically biaxial crystals in
which there is no fixed and defi-
nite relation between the optical
and crystallographic directions—
corresponding with the triclinic
system.

Optically Isotropic Crys-
tals.—These belong to the cubic
system, and like all other opti-
cally isotropic (from ’ioos, like,
and rpéros, character) bodies
have only one index of refraction
for light of each colour. They
have no action on polarized light
(except in crystals which are cir-
cularly polarizing) ; and when ex-
amined in the polariscope or
polarizing microscope they  re-
main dark between crossed nicols
or polaroids, and cannot be dis-
tinguished optically from amor-
phous substances, such as glass.

Optically Uniaxial Crystals.—These belong to the tetragonal
and hexagonal (including rhombohedral) systems, and between
crystals of these systems there is no optical distinction. Such
crystals are anisotropic or doubly refracting (see LicHT: Refrac-
tion and Double Refraction); but for light travelling through
them in a certain, single direction they are singly refracting. This
direction, which is called the optic axis, is the same for light of
all colours and at all temperatures; it coincides in direction with
the principal crystallographic axis, which in tetragonal crystals is .
a fourfold (or 4) axis of symmetry, and in the hexagonal system a
threefold or sixfold axis.

PEPTIDE.
BOND

BY COURTESY OF AMERICAN CHEMICAL SOCI.
E£TY, E. W. HUGHES AND W. J. MOORE

FiG. 132.—DIPEPTIDE MOLECULE

Fourier projection of the simplest di-
peptide, glycylgiycine. The molecules
tine up in chains as a result of hydro-
gen or zwitter ion bonding between the
carboxy group at one end of the chain
and the amino group at the other
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For light of each colour there are two indices of refraction;
namely, the ordinary index (w) corresponding with the ordinary
ray, which vibrates perpendicular to the optic axis; and the extra-
ordinary index (e) corresponding with the extraordinary ray,
which vibrates parallel to the optic axis. If the ordinary index of
refraction be greater than the extraordinary index, the crystal
is said to be optically negative, while if less the crystal is optically
positive. The difference between the two indices is a measure of
the strength of the double refraction or birefringence. Thus in
calcite, for sodium (D) light, w=1.6585 and € 1.4863; hence this
substance is optically negative with a relatively high double re-
fraction of w—e =o0.1722. In quartz w=1.5442, €=1.5533 and
€—w =0.0001; this mineral is therefore optically positive with
low double refraction. The indices of refraction vary, not only
for light of different colours, but also slightly with the tempera-
ture.

The optical characters of uniaxial crystals are symmetrical not
only with respect to the full number of planes and axes of sym-
metry of tetragonal and hexagonal crystals, but also with respect
‘to all vertical planes, i.e., all planes containing the optic axis.
A surface expressing the optical relations of such crystals is thus
an ellipsoid of revolution about the optic axis. (In cubic crystals
the corresponding surface is a sphere.) In the optical indicatrix
(L. Fletcher, The Optical Indicatrix and the Transmission of Light
in Crystals, London, 18gz), the length of the principal axis, or
axis of rotation, is proportional to the index of refraction (i.e.,
inversely proportional to the velocity) of the extraordinary rays,
which vibrate along this axis and are transmitted in directions per-
pendicular thereto; the equatorial diameters are proportional to
the index of refraction of the ordinary rays, which vibrate per-
pendicular to the optic axis. For positive uniaxial crystals the
indicatrix is thus a prolate spheroid (lemon-shaped), for nega-
tive crystals an oblate spheroid (orange-shaped).

In Fresnel’s ellipsoid the axis of rotation is proportional to the
velocity of the extraordinary ray, and the equatorial diameters
proportional to the velocity of the ordinary ray; it is therefore an
oblate spheroid for positive crystals, and a prolate spheroid for
negative crystals. The ray surface, or wave surface, which rep-
resents the distances traversed by the rays during a given inter-
val of time in various directions from a point of origin within the
crystal, consists in uniaxial crystals of two sheets; namely, a
sphere, corresponding to the ordinary rays, and an ellipsoid of
revolution, corresponding to the extraordinary rays. The differ-

ence in form of the ray surface for positive and negative crystals.

is shown in fig. 135 and 136.

When a uniaxial crystal is examined in a polariscope or polariz-
ing microscope between crossed nicols (i.e., with the principal
planes of the polarizer or analyzer at right angles, and so produc-
ing a dark field of view) its behaviour differs according to the
direction in which the light travels through the crystal, to the po-
sition of the crystal with respect to the principal planes of the
nicols, and further, whether convergent or parallel polarized light
be employed. A tetragonal or hexagonal crystal viewed, in paral-
lel light, through the basal plane, i.e., along the principal axis, will
remain dark as it is rotated between crossed nicols, and will thus
not differ in its behaviour from a cubic crystal or other isotropic
body. If, however, the crystal be viewed in any other direction,
for example, through a prism face, it will, except in certain posi-
tions, have an action on the polarized light. A plane-polarized ray
entering the crystal will be resolved into two polarized rays with
the directions of vibration parallel to the vibration-directions in
the crystal. These two rays on leaving the crystal will be com-
bined again in the analyzer, and a portion of the light transmitted
through the instrument; the crystal will then show up brightly
against the dark field. Further, owing to interference of these
two rays in the analyzer, the light will be brilliantly coloured, espe-
cially if the crystal be thin, or if a thin section of a crystal be ex-
amined. The particular colour seen will depend on the strength
of the double refraction, the orientation of the crystal or section,
and upon its thickness. If, now, the crystal be rotated with the
stage of the microscope, the nicols remaining fixed in position, the
light transmitted through the instrument will vary in intensity,
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and in certain positions will be cut out altogether. The latter-
happens when the vibration directions of the crystal are parallel
to the vibration directions of the nicols (these being indicated by
cross wires in the microscope). The crystal, now being dark, is
said to be in position of extinction; and as it is turned through a
complete rotation of 360° it will extinguish four times. If a prism
face be viewed through, it will be seen that, when the crystal is in
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BY COURTESY OF (A) NATIONAL ACADEMY OF SCIENCES, (B) THE ROYAL SOCIETY (LONDON)
F16. 133.—PROTEIN CHAIN MODELS DERIVED FROM ANALYSIS OF PEPTIDES

Both proposed models show internal hydrogen bonding as contrasted with the
straight peptide chain of Fig. 132 which only shows external hydrogen bonding.
Only one atom of each side group is shown

a position of extinction, the cross wires of the microscope are
parallel to the edges of the prism: the crystal is then said to give
straight extinction or parallel extinction.

In convergent light, between crossed nicols, a very different
phenomenon is to be observed when a uniaxial crystal; or secti.on
of such a crystal, is placed with its optic axis coincident with
the axis of the microscope. The rays of light, being convergent,
do not travel in the direction of the optic axis and are therefore
doubly refracted in the crystal; in the analyzer the vibrations will
be reduced to the same plane and there will be interference of the.
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two sets of rays. The result is an interference figure (fig. 137),
which consists of a number of brilliantly coloured concentric rings,
each showing the colours of the spectrum of white light; inter-

1100

BY COURTESY OF “ACTA CRYSTALLOGRAPHIC”

FiG. 134.—DIAGRAM OF HORSE METHAEMOGLOBIN CRYSTAL STRUCTURE,
SHOWING APPROXIMATE MOLECULAR SHAPE AND ARRANGEMENT

secting the rings is a black cross, the arms of which are parallel
to the principal planes of the nicols. If monochromatic light be
used instead of white light, the rings will be alternately light and
dark. The number and distance apart of the rings depend on the
strength of the double refraction and on the thickness of the
crystal. By observing the effect produced on such a uniaxial in-
terference figure when a quartz wedge, a gypsum plate or a mica
plate is superposed on the crystal, it may be at once decided
‘whether the crystal is optically positive or negative. Such a sim-
ple test may, for example, be applied for distinguishing certain
faceted gem stones: thus zircon and phena-
kite are optically positive, while corundum
(ruby and sapphire) and beryl (emerald)
are optically negative,

Optically Biaxial Crystals.—In these
crystals there are three principal indices of
refraction, denoted by «, 8 and v; of
these v is the greatest and « the least
( v>pB>a). The three principal vibra-
tion directions, corresponding to these in-
dices, are at right angles to each other, and
are the directions of the three rectangular
axes of the optical indicatrix. The indi-
catrix (fig. 138) is an ellipsoid with the
lengths of its axes proportional to the re-
fractive indices; OC=vy, OB=3, 0A=q,

136 where OC>0B>0A. The figure is sym-
Fle. 135.—RAY-SURFACE metrical with respect to the principal
sx;:“cnon OF A POSITIVE planes OAB, 0AC, OBC.
;‘__’l éf‘ﬁ?;iﬁtg;n acg  In Fresnel’s ellipsoid the three rectangu-
SECTION OF A NEGATIVE lar axes are proportional to 1/« , 1/8and
UNIAXIAL CRYSTAL - 1/7, and are usually denoted by a, b and
¢ respectively, where & > b > ¢ : these
have often been called axes of optical elasticity, a term now gen-
erally discarded.

The ray surface (represented in fig. 139 by its sections in the
three principal planes) is derived from the indicatrix in the fol-
lowing manner. A ray of light entering the crystal and travelling
in the direction OA is resolved into polarized rays vibrating paral-
lel to OB and OC, and therefore propagated with the velocities
1/8 and 1/ respectively: distances Ob and Oc¢ (fig. 139) pro-
portional to these velocities are marked off in the direction OA.
Similarly, rays travelling along OC have the velocities 1/a and
1/8, and those along OB the velocities 1/o and 1/y. In the two

_directions Op; and Op., (fig. 138), perpendicular to the two circu-
lar sections PiP; and P.P, of the indicatrix, the two rays will be
transmitted with the same velocity 1/8. These two directions are
called the optic axes (primary optic axis), though they have not
all the properties which are associated with the optic axis of a

,[ Optic axis \

w
u
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uniaxial crystal. They have very nearly the same direction as
the lines Os; and Os, in fig. 139, which are distinguished as the
secondary optic axes. In most crystals the primary and secondary
optic axes are inclined to each other at not more than a few min-
utes, so that for practical purposes there is no distinction between
them.

The angle between Op: and Op; is called the optic axial angle;
and the plane OAC in which they lie is called the optic axial plane.
The angles between the optic axes are bisected by the vibration
directions OA4 and OC; the one which bisects the acute angle being
called the acute bisectrix or first mean line, and the other the ob-
tuse bisectrix or second mean line. When the acute bisectrix coin-
cides with the greatest axis OC of the indicatrix, i.e., the vibration
direction corresponding with the refractive index « (as in fig. 138
and 139), the crystal is described as being optically positive; and
when the acute bisectrix coincides with 04, the vibration direc-
tion for the index « the crystal is negative. The distinction be-
tween positive and negative biaxial crys-
tals thus depends on the relative magni-
tude of the three principal indices of
refraction; in positive crystals 8 is nearer
to « than to v while in negative crystals
the reverse is the case. Thus in topaz,
which is optically positive, the refractive
indices for sodium light are o =1.6120,
B =1.6150, v =1.6224; and for orthoclase
which is optically negative, & =1.5190,
B =1.5237, v =1.5260. The difference
4 —a represents the strength of the double

Fie. 137.—INTERFER-
ENCE FIGURE OF A UNI-
AXIAL CRYSTAL

refraction,

Since the refractive indices vary both with the colour of the
light and with the temperature, there will be for each colour and
temperature slight differences in the form of both the indicatrix
and the ray surface; consequently there will be variations in the
positions of the optic axes and in the size of the optic axial angle.
This phenomenon is known as the dispersion of the optic axes.
When the axial angle is greater for red light than for blue the
' character of the dispersion is expressed by
r>v and when less by r<v. Insome crys-
tals, e.g., brookite, the optic axes for red
light and for blue light may be, at certain
temperatures, in planes at right angles.

The type of interference figure exhibited
by a biaxial crystal in convergent polarized
light between crossed nicols is represented
in fig. 140 and 141. The crystal must be
viewed along the acute bisectrix, and for
this purpose it is often necessary to cut a
plate from the crystal perpendicular to this
direction: sometimes, however, as in mica
and topaz, a cleavage flake will be perpen-
dicular to the acute bisectrix. When seen
in white light, there are around each optic
axis a series of brilliantly coloured ovals,
which at the centre join to form an 8-
shaped loop, while farther from the centre
the curvature of the rings is approximately
that of lemniscates. In the position
shown in fig. 140 the vibration directions in~
the crystal are parallel to those of the nic--

139 ols, and the figure is intersected by two
Fi6. 138.—OPTICAL INDI- black bands or brushes forming a cross.
CATRIX OF A BIAXIAL When, however, the crystal is rotated with
;f;.ST:;';'_RAY_SURFACE the stage of the microscope the cross
OF A BIAXIAL CRYsTAL  Dreaks up into the two branches of a hyper-
bola, and when the vibration directions of
the crystal are inclined at 45° to those of the nicols the figure is
that shown in fig. 141. The points of emergence of the optic axes
are at the middle of the hyperbolic brushes when the crystal is in
the diagonal position: the size of the optic axial angle can there-
fore be directly measured with considerable accuracy.
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In orthorhombic crystals the three principal vibration-directions
coincide with the three crystallographic axes, and have therefore
fixed positions in the crystal, which are the same for light of all
colours and at all temperatures. The optical orientation of an
orthorhombic crystal is completely defined by stating to which
crystallographic planes the optic axial plane and the acute bisectrix
are respectively parallel and perpendicular. Examined in parallel
light between crossed nicols, such a crystal
extinguishes parallel to the crystallographic
axes, which are often parallel to the edges
of a face or section; there is thus usually
straight extinction. The interference fig-
ure seen in convergent polarized light is
symmetrical about two lines at right an-
gles.

In monoclinic crystals only one vibra-
tion direction has a fixed position within
the crystal, being parallel to the ortho-axis
(i.e., perpendicular to the plane of sym-
metry or the plane{ozo}). The other two
Eibra}tlion directions lie in the plane {010}, 5éﬁ;=|::z4£()nc‘:z"l:1eig:{;lg;

ut they may vary in position for light of

different colours and at different tempera- A BIAXIAL CRYSTAL
tures. In addition to dispersion of the optic axes there may thus,
in crystals of this system, be also dispersion of the bisectrices. The
latter may be of one or another of three kinds, according to which
of the three vibration directions coincides with the orthoaxis of the
crystal. When the acute bisectrix is fixed in position, the optic axial
planes for different colours may be crossed, and the interference
figure will then be symmetrical with respect to a point only
(crossed dispersion). When the obtuse bisectrix is fixed, the axial
planes may be inclined to one another, and the interference figure
is symmetrical only about a line which is perpendicular to the axial
planes (horizontal dispersion). Finally, when the vibration direc-
tion corresponding to the refractive index 3, or the third mean line,
has a fixed position, the optic axial plane lies in the plane {o1c},
but the acute bisectrix may vary in position in this plane; the in-
terference figure will then be symmetrical only about a line joining
the optic axes (inclined dispersion). Examples of substances ex-
hibiting these three kinds of dispersion are borax, orthoclase and
gypsum, respectively. In orthoclase and gypsum, however, the
optic axial angle gradually diminishes as the crystals are_heated,
and after passing through a uniaxial position they open out in a
plane at right angles to the one they previously occupied; the char-
acter of the dispersion thus becomes reversed in the two examples
quoted. When examined in par-

allel light between crossed nicols
monoclinic crystals will give et ¥ llo
straight extinction only in faces ﬂw [I
and sections which are perpen-

dicular to the plane of symmetry
(or the plane {oro}); in all other
faces and sections the extinction directions will be inclined to the
edges of the crystal. The angles between these directions and
edges are readily measured, and being dependent on the optical
orientation of the crystal, they are often characteristic constants
of the substance for example, see PLAGIOCLASE.

In triclinic crystals there is no relation between the optical
and crystallographic directions, and the exact determination of
the optical orientation is often a matter of considerable difficulty.
The character of the dispersion of the bisectrices and optic axes
is still more complex than in monoclinic crystals, and the inter-
ference figures are devoid of symmetry.

Absorption of Light in Crystals: Pleochroism.—In crystals

F1G. 142.—DiCHROSCOPE

other than those of the cubic system, rays of light with different
vibration directions will, as a rule, be differently absorbed; and |
the polarized rays on emerging from the crystal may be of differ-
ent intensities and (if the observation be made in white light and
the crystal is coloured) differently coloured. Thus, in tourmaline

H
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is allowed to pass through the crystal. A plate of tourmaline cut

parallel to the principal axis may therefore be used for producing”

a beam of polarized light, and two such plates placed in crossed
position form the polarizer or analyzer of tourmaline tongs, with
the aid of which the interference figures of crystals may be simply
shown. Uniaxial (tetragonal and hexagonal) crystals when show-
ing perceptible differences in colour for the ordinary and extra-
ordinary rays are said to be dichroic. In biaxial (orthorhombic,
monoclinic and triclinic) crystals, rays vibrating along each of
the three principal vibration-directions may be differently absorbed
and, in coloured crystals, differently coloured; such crystals are
therefore said to be trichroic or in general pleochroic (from w\éwv,
more, and xpds, colour). The directions of maximum absorption
in biaxial crystals have, however, no necessary relation with the
axes of the indicatrix, unless these have fixed crystallographic di-
rections, as in the orthorhombic system and the orthoaxis in the
monoclinic. In epidote it has been shown that the two directions
of maximum absorption which lie in the plane of symmetry are
not even at right angles.

The pleochroism of some crystals is so strong that when they
are viewed through in different directions they exhibit marked
differences in colour. Thus a crystal of the
mineral cordierite (called also dichroite be- \
cause of its strong pleochroism) will be
seen to be dark blue, pale blue or pale yel-
low according to which of three perpen- O
dicular directions is viewed. The face
colours seen directly in this way result,
however, from the mixture of two axial
colours belonging to rays vibrating in two
directions. In order to see the axial col-
ours separately the crystal must be exam-
ined with a dichroscope, or in a polarizing
microscope from which the analyzer has
been removed. The dichroscope, or di-

chrooscope (fig. 142), consists of a cleav- Fie. 143.—conpucTIVITY"

age rhombohedron of calcite (Iceland OF HEAT IN QUARTZ
spar) p, on the ends of which glass prisms

w are cemented: the lens [ is focused on a small square aperture o
in the tube of the instrument. The eye of the observer placed at e
will see two images of the square aperture, and if a pleochroic crys-
tal be placed in front of this aperture the two images will be dif-

ferently coloured. On rotating this crystal with respect to the

instrument the maximum difference in the colours will be obtained
when the vibration directions in the crystal coincide with those
in the calcite. Such a simple instrument is especially useful for
the examination of faceted gem stones, even when they are
mounted in their settings. A single glance suffices to distinguish
between a ruby and a spinel ruby, since the former is dichroic and
the latter isotropic and therefore not dichroic.

The characteristic absorption bands in the spectrum of white
light which has been transmitted through certain crystals, par-
ticularly those of salts of the cerium metals, will, of course, be
different according to the direction of vibration of the rays.

(L.].S.;].D.H.D)
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CRYSTALLOID is a term of historic interest, introduced by
Graham. Substances such as sugar or sodium chloride which are
able to diffuse through a parchment membrane separating their
aqueous solution from pure water are called crystalloid, whereas
substances which are unable to diffuse through such a membrane
are called colloids. Graham was led to this terminology by the
observation that the former type of substances crystallized readily,
whereas the latter type did not seem to form crystals. It became
generally realized that this is not correct and that colloids may be
both crystallizable and noncrystallizable; that they may repre-
sent either crystals or noncrystalline substances. It was further-
more generally agreed that the ability of a substance to diffuse
through a membrane depends on the size of its units (e.g., on the
size of the molecules), on the electrostatic charge of the membrane
and on the Donnan equilibrium. The continued use of the term
“crystalloid” in Graham’s sense (i.e., as the antithesis to colloid)
is therefore incorrect, notwithstanding its occasional use in modern
chemical literature. (W1 H.)

CRYSTAL PALACE, a well-known English resort in the
neighbourhood of Sydenham just outside the southern boundary
of the county of London. The building, chiefly of iron and glass,
was designed by Sir Joseph Paxton (g¢.v.), and was originally
erected in Hyde park for the 1851 exhibition. It was enlarged
and re-erected on high ground in its new site in 1854 and for a
quarter century was very popular as an amusement centre and
show place. After that it declined somewhat, but after World
War I it was chosen because of its spaciousness to house the Impe-
rial War museum, comprising a large collection of war relics,
souvenirs, photographs and other records. There were accommo-
dations in the grounds for many sports and games. On Nov. 30,
1936, the building was almost wholly destroyed by fire.

CSARDAS or Czarpas (chardash), a national dance of Hun-
gary, distinguished especially by its violent alternations of tempo,
so that it is now wild and furious, now slow and restrained.

CSENGERY, ANTAL (1822-1880), Hungarian publicist,
and a historical writer of great influence on his time, was born at
Nagyvarad on June 2, 1822. He took, at an early date, a very
active part in the literary and political movements immediately
preceding the Hungarian revolution of 1848. As a historical writer
he excelled chiefly in brilliant and thoughtful essays on the leading
political personalities of his time, such as Paul Nagy, Bertalan,
Szemere and others. He died at Budapest on July 13, 1880,

CSIKY, GERGOLY (1842-1891), Hungarian dramatist, was
born on Dec. 8, 1942, at Pankota, in the county of Arad. He
studied Roman Catholic theology at Pest and Vienna, and was
professor in the Priest’s college at Temesvar from 1870 to 1878.
In the latter year, however, he joined the Evangelical Church
and took up literature. Beginning with novels and works on
ecclesiastical history, which met with some recognition, he ulti-
mately devoted himself to writing for the stage. Here his success

was immediate.

His play Az ellendllhatatlan (L'Irrésistible),.
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Call for Contributions to the Next Teaching Commission Newsletter

Providing there is enough interest, the second issue of the Teaching Commission Newsletter is expected
to appear around June of 2007 with the primary theme to be determined. If no-one is else is co-opted, the
newsletter will be edited by Lachlan Cranswick.

Contributions would be also greatly appreciated on matters of general interest to the crystallographic
teaching community.

Please send articles and suggestions directly to the editor.

Lachlan M. D. Cranswick

CNBC, NRC,

Building 459, Station 18,

Chalk River Laboratories,

Chalk River, Ontario,

Canada, K0J 1J0

E-mail: lachlan.cranswick@nrc.gc.ca

WWW: http://neutron.nrc.gc.ca/peep.html#cranswick
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